Graph-based clustering and data visualization algorithms

著者

    • Vathy-Fogarassy, Ágnes
    • Abonyi, Janos

書誌事項

Graph-based clustering and data visualization algorithms

Ágnes Vathy-Fogarassy, János Abonyi

(SpringerBriefs in computer science)

Springer, c2013

  • pbk

大学図書館所蔵 件 / 3

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.

目次

Vector Quantisation and Topology-Based Graph Representation Graph-Based Clustering Algorithms Graph-Based Visualisation of High-Dimensional Data

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB14575996
  • ISBN
    • 9781447151579
  • 出版国コード
    uk
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    London
  • ページ数/冊数
    xiii, 110 p.
  • 大きさ
    24 cm
  • 親書誌ID
ページトップへ