Basic overconstrained topologies with schönflies motions
著者
書誌事項
Basic overconstrained topologies with schönflies motions
(Solid mechanics and its applications, v. 206 . Structural synthesis of parallel robots ; pt. 5/a)
Springer, c2014
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
This book represents the fifth part of a larger work dedicated to the structural synthesis of parallel robots. The originality of this work resides in the fact that it combines new formulae for mobility, connectivity, redundancy and overconstraints with evolutionary morphology in a unified structural synthesis approach that yields interesting and innovative solutions for parallel robotic manipulators.
This is the first book on robotics that presents solutions for coupled, decoupled, uncoupled, fully-isotropic and maximally regular robotic manipulators with Schoenflies motions systematically generated by using the structural synthesis approach proposed in Part 1. Overconstrained non-redundant/overactuated/redundantly actuated solutions with simple/complex limbs are proposed. Many solutions are presented here for the first time in the literature. The author had to make a difficult and challenging choice between protecting these solutions through patents and releasing them directly into the public domain. The second option was adopted by publishing them in various recent scientific publications and above all in this book. In this way, the author hopes to contribute to a rapid and widespread implementation of these solutions in future industrial products.
目次
Preface
1 Introduction
2 Fully-parallel topologies with coupled Schoenflies motions
3 Overactuated topologies with coupled Schoenflies motions
4 Fully-parallel topologies with decoupled Schoenflies motions
5 Topologies with uncoupled Schoenflies motions
6 Maximally regular topologies with Schoenflies motions
Index
「Nielsen BookData」 より