Statistics : the art and science of learning from data

著者

書誌事項

Statistics : the art and science of learning from data

Alan Agresti, Christine Franklin

Pearson Education Limited, c2014

3rd ed., Pearson new international ed

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Statistics: The Art and Science of Learning from Data, Third Edition, helps students become statistically literate by encouraging them to ask and answer interesting statistical questions. This book takes the ideas that have turned statistics into a central science in modern life and makes them accessible without compromising necessary rigor. Authors Alan Agresti and Christine Franklin believe that it's important for students to learn and analyze both quantitative and categorical data. As a result, the text pays greater attention to the analysis of proportions than many other introductory statistics texts. Concepts are introduced first with categorical data, and then with quantitative data. The Third Edition has been edited for conciseness and clarity to keep students focused on the main concepts. The data-rich examples that feature intriguing human-interest topics now include topic labels to indicate which statistical topic is being applied. New learning objectives for each chapter appear in the Instructor's Edition, making it easier to plan lectures and Chapter 7 (Sampling Distributions) now incorporates simulations in addition to the mathematical formulas.

目次

Part 1: Gathering and Exploring Data 1. Statistics: The Art and Science of Learning from Data 1.1 Using Data to Answer Statistical Questions 1.2 Sample Versus Population 1.3 Using Calculators and Computers Chapter Summary Chapter Problems 2. Exploring Data with Graphs and Numerical Summaries 2.1 Different Types of Data 2.2 Graphical Summaries of Data 2.3 Measuring the Center of Quantitative Data 2.4 Measuring the Variability of Quantitative Data 2.5 Using Measures of Position to Describe Variability 2.6 Recognizing and Avoiding Misuses of Graphical Summaries Chapter Summary Chapter Problems 3. Association: Contingency, Correlation, and Regression 3.1 The Association Between Two Categorical Variables 3.2 The Association Between Two Quantitative Variables 3.3 Predicting the Outcome of a Variable 3.4 Cautions in Analyzing Associations Chapter Summary Chapter Problems 4. Gathering Data 4.1 Experimental and Observational Studies 4.2 Good and Poor Ways to Sample 4.3 Good and Poor Ways to Experiment 4.4 Other Ways to Conduct Experimental and Nonexperimental Studies Chapter Summary Chapter Problems Part 1 Review Part 1 Questions Part 1 Exercises Part 2: Probability, Probability Distributions, and Sampling Distributions 5. Probability in Our Daily Lives 5.1 How Probability Quantifies Randomness 5.2 Finding Probabilities 5.3 Conditional Probability: The Probability of A Given B 5.4 Applying the Probability Rules Chapter Summary Chapter Problems 6. Probability Distributions 6.1 Summarizing Possible Outcomes and Their Probabilities 6.2 Probabilities for Bell-Shaped Distributions 6.3 Probabilities When Each Observation Has Two Possible Outcomes Chapter Summary Chapter Problems 7. Sampling Distributions 7.1 How Sample Proportions Vary Around the Population Proportion 7.2 How Sample Means Vary Around the Population Mean 7.3 The Binomial Distribution Is a Sampling Distribution (Optional) Chapter Summary Chapter Problems Part 2 Review Part 2 Questions Part 2 Exercises Part 3: Inferential Statistics 8. Statistical Inference: Confidence Intervals 8.1 Point and Interval Estimates of Population Parameters 8.2 Constructing a Confidence Interval to Estimate a Population Proportion 8.3 Constructing a Confidence Interval to Estimate a Population Mean 8.4 Choosing the Sample Size for a Study 8.5 Using Computers to Make New Estimation Methods Possible Chapter Summary Chapter Problems 9. Statistical Inference: Significance Tests about Hypotheses 9.1 Steps for Performing a Significance Test 9.2 Significance Tests about Proportions 9.3 Significance Tests about Means 9.4 Decisions and Types of Errors in Significance Tests 9.5 Limitations of Significance Tests 9.6 The Likelihood of a Type II Error (Not Rejecting H0, Even Though It's False) Chapter Summary Chapter Problems 10. Comparing Two Groups 10.1 Categorical Response: Comparing Two Proportions 10.2 Quantitative Response: Comparing Two Means 10.3 Other Ways of Comparing Means and Comparing Proportions 10.4 Analyzing Dependent Samples 10.5 Adjusting for the Effects of Other Variables Chapter Summary Chapter Problems Part 3 Review Part 3 Questions Part 3 Exercises

「Nielsen BookData」 より

詳細情報

  • NII書誌ID(NCID)
    BB14679368
  • ISBN
    • 9781292021188
  • 出版国コード
    uk
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Edinburgh
  • ページ数/冊数
    ii, 806 p.
  • 大きさ
    28 cm.
  • 付属資料
    1 CD-ROM
  • 分類
  • 件名
ページトップへ