Matrix algebra from a statistician's perspective
Author(s)
Bibliographic Information
Matrix algebra from a statistician's perspective
Springer, 2012, c2008
[Updated with and Errata]
- : pbk
Related Bibliography 1 items
Available at 8 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"Updated with and Errata 2012"--T.p.Verso
"This paperback edition, a reprint of the 1997 edition…"--Back Cover
Includes bibliographical references (p. [621]-623) and index
Description and Table of Contents
Description
A knowledge of matrix algebra is a prerequisite for the study of much of modern statistics, especially the areas of linear statistical models and multivariate statistics. This reference book provides the background in matrix algebra necessary to do research and understand the results in these areas. Essentially self-contained, the book is best-suited for a reader who has had some previous exposure to matrices. Solultions to the exercises are available in the author's "Matrix Algebra: Exercises and Solutions."
Table of Contents
Preface. - Matrices. - Submatrices and partitioned matricies. - Linear dependence and independence. - Linear spaces: row and column spaces. - Trace of a (square) matrix. - Geometrical considerations. - Linear systems: consistency and compatability. - Inverse matrices. - Generalized inverses. - Indepotent matrices. - Linear systems: solutions. - Projections and projection matrices. - Determinants. - Linear, bilinear, and quadratic forms. - Matrix differentiation. - Kronecker products and the vec and vech operators. - Intersections and sums of subspaces. - Sums (and differences) of matrices. - Minimzation of a second-degree polynomial (in n variables) subject to linear constraints. - The Moore-Penrose inverse. - Eigenvalues and Eigenvectors. - Linear transformations. - References. - Index.
by "Nielsen BookData"