Medical imaging signals and systems

書誌事項

Medical imaging signals and systems

Jerry L. Prince, Jonathan M. Links

(Always learning)

Pearson Education, c2015

2nd ed

大学図書館所蔵 件 / 5

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

This text is designed for courses in medical imaging systems. It is also suitable for professionals seeking an overview of medical imaging systems. With signal processing as its foundation, Medical Imaging Signals and Systems, Second Edition covers the most important imaging modalities in radiology: projection radiography, x-ray computed tomography, nuclear medicine, ultrasound imaging, and magnetic resonance imaging. Organized into parts to emphasize key overall conceptual divisions, Medical Imaging is most appropriate for engineering students who have taken the prerequisite signals and systems courses as well as elementary probability. This program presents a better teaching and learning experience-for you and your students. Teach with a dynamic art program: The text's wealth of images and diagrams help students visualize key concepts. Capture students' attention: Motivational example problems both keep students focused and reveal interesting features. Use relevant material: Biologically relevant examples illustrate the important context of medical imaging.

目次

Part I Basic Imaging Principles 1 1 Introduction 5 1.1 History of Medical Imaging 5 1.2 Physical Signals 6 1.3 Imaging Modalities 7 1.4 Projection Radiography 7 1.5 Computed Tomography 9 1.6 Nuclear Medicine 10 1.7 Ultrasound Imaging 11 1.8 Magnetic Resonance Imaging 12 1.9 Multimodality Imaging 13 1.10 Summary and Key Concepts 13 2 Signals and Systems 15 2.1 Introduction 15 2.2 Signals 16 2.2.1 Point Impulse 16 2.2.2 Line Impulse 19 2.2.3 Comb and Sampling Functions 19 2.2.4 Rect and Sinc Functions 20 2.2.5 Exponential and Sinusoidal Signals 22 2.2.6 Separable Signals 23 2.2.7 Periodic Signals 23 2.3 Systems 24 2.3.1 Linear Systems 24 2.3.2 Impulse Response 25 2.3.3 Shift Invariance 25 2.3.4 Connections of LSI Systems 28 2.3.5 Separable Systems 30 2.3.6 Stable Systems 31 2.4 The Fourier Transform 31 2.5 Properties of the Fourier Transform 36 2.5.1 Linearity 36 2.5.2 Translation 37 2.5.3 Conjugation and Conjugate Symmetry 37 2.5.4 Scaling 37 2.5.5 Rotation 38 2.5.6 Convolution 38 2.5.7 Product 39 2.5.8 Separable Product 40 2.5.9 Parseval's Theorem 40 2.5.10 Separability 40 2.6 Transfer Function 41 2.7 Circular Symmetry and the Hankel Transform 43 2.8 Summary and Key Concepts 47 3 Image Quality 54 3.1 Introduction 54 3.2 Contrast 55 3.2.1 Modulation 56 3.2.2 Modulation Transfer Function 56 3.2.3 Local Contrast 60 3.3 Resolution 61 3.3.1 Line Spread Function 61 3.3.2 Full Width at Half Maximum 62 3.3.3 Resolution and Modulation Transfer Function 63 3.3.4 Subsystem Cascade 65 3.3.5 Resolution Tool 68 3.3.6 Temporal and Spectral Resolution 68 3.4 Noise 69 3.4.1 Random Variables 70 3.4.2 Continuous Random Variables 70 3.4.3 Discrete Random Variables 72 3.4.4 Independent Random Variables 75 3.5 Signal-to-Noise Ratio 76 3.5.1 Amplitude SNR 77 3.5.2 Power SNR 77 3.5.3 Differential SNR 79 3.5.4 Decibels 80 3.6 Sampling 80 3.6.1 Signal Model for Sampling 81 3.6.2 Nyquist Sampling Theorem 83 3.6.3 Anti-Aliasing Filters 85 3.7 Other Effects 86 3.7.1 Artifacts 86 3.7.2 Distortion 88 3.8 Accuracy 88 3.8.1 Quantitative Accuracy 89 3.8.2 Diagnostic Accuracy 89 3.9 Summary and Key Concepts 92 Part II Radiographic Imaging 101 4 Physics of Radiography 106 4.1 Introduction 106 4.2 Ionization 107 4.2.1 Atomic Structure 107 4.2.2 Electron Binding Energy 109 4.2.3 Ionization and Excitation 109 4.3 Forms of Ionizing Radiation 110 4.3.1 Particulate Radiation 110 4.3.2 Electromagnetic Radiation 112 4.4 Nature and Properties of Ionizing Radiation 113 4.4.1 Primary Energetic Electron Interactions 114 4.4.2 Primary Electromagnetic Radiation Interactions 116 4.5 Attenuation of Electromagnetic Radiation 120 4.5.1 Measures of X-Ray Beam Strength 121 4.5.2 Narrow Beam, Monoenergetic Photons 123 4.5.3 Narrow Beam, Polyenergetic Photons 125 4.5.4 Broad Beam Case 127 4.6 Radiation Dosimetry 127 4.6.1 Exposure 127 4.6.2 Dose and Kerma 128 4.6.3 Linear Energy Transfer (LET) 128 4.6.4 The f -Factor 128 4.6.5 Dose Equivalent 129 4.6.6 Effective Dose 130 4.7 Summary and Key Concepts 131 5 Projection Radiography 135 5.1 Introduction 135 5.2 Instrumentation 136 5.2.1 X-Ray Tubes 136 5.2.2 Filtration and Restriction 139 5.2.3 Compensation Filters and Contrast Agents 141 5.2.4 Grids, Airgaps, and Scanning Slits 143 5.2.5 Film-Screen Detectors 146 5.2.6 X-Ray Image Intensifiers 148 5.2.7 Digital Radiography 149 5.2.8 Mammography 154 5.3 Image Formation 154 5.3.1 Basic Imaging Equation 154 5.3.2 Geometric Effects 155 5.3.3 Blurring Effects 162 5.3.4 Film Characteristics 166 5.4 Noise and Scattering 169 5.4.1 Signal-to-Noise Ratio 169 5.4.2 Quantum Efficiency and Detective Quantum Efficiency 171 5.4.3 Compton Scattering 173 5.5 Summary and Key Concepts 175 6 Computed Tomography 186 6.1 Introduction 186 6.2 CT Instrumentation 188 6.2.1 CT Generations 188 6.2.2 X-Ray Source and Collimation 194 6.2.3 Dual-Energy CT 194 6.2.4 CT Detectors 195 6.2.5 Gantry, Slip Ring, and Patient Table 196 6.3 Image Formation 197 6.3.1 Line Integrals 197 6.3.2 CT Numbers 198 6.3.3 Parallel-Ray Reconstruction 198 6.3.4 Fan-Beam Reconstruction 208 6.3.5 Helical CT Reconstruction 212 6.3.6 Cone Beam CT 213 6.3.7 Iterative Reconstruction 213 6.4 Image Quality in CT 213 6.4.1 Resolution 214 6.4.2 Noise 216 6.4.3 Artifacts 221 6.5 Summary and Key Points 223 Part III Nuclear Medicine Imaging 235 7 The Physics of Nuclear Medicine 239 7.1 Introduction 239 7.2 Nomenclature 240 7.3 Radioactive Decay 240 7.3.1 Mass Defect and Binding Energy 240 7.3.2 Line of Stability 242 7.3.3 Radioactivity 243 7.3.4 Radioactive Decay Law 243 7.4 Modes of Decay 245 7.4.1 Positron Decay and Electron Capture 245 7.4.2 Isomeric Transition 246 7.5 Statistics of Decay 247 7.6 Radiotracers 249 7.7 Summary and Key Concepts 251 8 Planar Scintigraphy 255 8.1 Introduction 255 8.2 Instrumentation 255 8.2.1 Collimators 256 8.2.2 Scintillation Crystal 258 8.2.3 Photomultiplier Tubes 258 8.2.4 Positioning Logic 260 8.2.5 Pulse Height Analyzer 260 8.2.6 Gating Circuit 262 8.2.7 Image Capture 263 8.2.8 Solid State and Other New Cameras 264 8.3 Image Formation 264 8.3.1 Event Position Estimation 264 8.3.2 Acquisition Modes 266 8.3.3 Anger Camera Imaging Equation 269 8.4 Image Quality 272 8.4.1 Resolution 273 8.4.2 Sensitivity 276 8.4.3 Uniformity 278 8.4.4 Energy Resolution 279 8.4.5 Noise 280 8.4.6 Factors Affecting Count Rate 281 8.5 Summary and Key Concepts 282 9 Emission Computed Tomography 293 9.1 Instrumentation 294 9.1.1 SPECT Instrumentation 294 9.1.2 PET Instrumentation 298 9.2 Image Formation 304 9.2.1 SPECT Image Formation 304 9.2.2 PET Image Formation 309 9.2.3 Iterative Reconstruction 313 9.3 Image Quality in SPECT and PET 317 9.3.1 Spatial Resolution 318 9.3.2 Attenuation and Scatter 319 9.3.3 Random Coincidences 320 9.3.4 Contrast 320 9.3.5 Noise and Signal-to-Noise Ratio 321 9.4 Summary and Key Concepts 321 Part IV Ultrasound Imaging 331 10 The Physics of Ultrasound 335 10.1 Introduction 335 10.2 The Wave Equation 336 10.2.1 Three-Dimensional Acoustic Waves 336 10.2.2 Plane Waves 338 10.2.3 Spherical Waves 340 10.3 Wave Propagation 341 10.3.1 Acoustic Energy and Intensity 341 10.3.2 Reflection and Refraction at Plane Interfaces 342 10.3.3 Transmission and Reflection Coefficients at Plane Interfaces 343 10.3.4 Attenuation 344 10.3.5 Scattering 347 10.3.6 Nonlinear Wave Propagation 347 10.4 Doppler Effect 349 10.5 Beam Pattern Formation and Focusing 353 10.5.1 Simple Field Pattern Model 354 10.5.2 Diffraction Formulation 355 10.5.3 Focusing 361 10.6 Summary and Key Concepts 362 11 Ultrasound Imaging Systems 367 11.1 Introduction 367 11.2 Instrumentation 367 11.2.1 Ultrasound Transducer 367 11.2.2 Ultrasound Probes 372 11.3 Pulse-Echo Imaging 374 11.3.1 The Pulse-Echo Equation 374 11.4 Transducer Motion 377 11.5 Ultrasound Imaging Modes 380 11.5.1 A-Mode Scan 380 11.5.2 M-Mode Scan 381 11.5.3 B-Mode Scan 381 11.6 Steering and Focusing 386 11.6.1 Transmit Steering and Focusing 386 11.6.2 Beamforming and Dynamic Focusing 388 11.7 Three-Dimensional Ultrasound Imaging 391 11.8 Image Quality 392 11.8.1 Resolution 392 11.8.2 Noise and Speckle 395 11.9 Summary and Key Concepts 396 Part V Magnetic Resonance Imaging 407 12 Physics of Magnetic Resonance 410 12.1 Introduction 410 12.2 Microscopic Magnetization 410 12.3 Macroscopic Magnetization 412 12.4 Precession and Larmor Frequency 414 12.5 Transverse and Longitudinal Magnetization 416 12.5.1 NMR Signals 417 12.5.2 Rotating Frame 419 12.6 RF Excitation 419 12.7 Relaxation 422 12.8 The Bloch Equations 425 12.9 Spin Echoes 426 12.10 Basic Contrast Mechanisms 429 12.11 Summary and Key Concepts 433 13 Magnetic Resonance Imaging 439 13.1 Instrumentation 439 13.1.1 System Components 439 13.1.2 Magnet 441 13.1.3 Gradient Coils 442 13.1.4 Radio Frequency Coils 445 13.1.5 Scanning Console and Computer 446 13.2 MRI Data Acquisition 447 13.2.1 Encoding Spatial Position 447 13.2.2 Slice Selection 449 13.2.3 Frequency Encoding 455 13.2.4 Polar Scanning 460 13.2.5 Gradient Echoes 461 13.2.6 Phase Encoding 462 13.2.7 Spin Echoes 465 13.2.8 Pulse Repetition Interval 467 13.2.9 Realistic Pulse Sequences 467 13.3 Image Reconstruction 469 13.3.1 Rectilinear Data 470 13.3.2 Polar Data 471 13.3.3 Imaging Equations 472 13.4 Image Quality 475 13.4.1 Sampling 475 13.4.2 Resolution 477 13.4.3 Noise 479 13.4.4 Signal-to-Noise Ratio 481 13.4.5 Artifacts 482 13.5 Advanced Contrast Mechanisms 483 13.6 Summary and Key Concepts 487 Index 497

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ