Tomography of the Earth's crust : from geophysical sounding to real-time monitoring

Author(s)

    • Weber, Michael
    • Münch, Ute

Bibliographic Information

Tomography of the Earth's crust : from geophysical sounding to real-time monitoring

Michael Weber, Ute Münch, editors

(Advanced Technologies in Earth Sciences, . GEOTECHNOLOGIEN Science Report ; no. 21)

Springer, c2014

  • : hbk

Available at  / 3 libraries

Search this Book/Journal

Note

"Advanced Technologies in Earth Sciences is base in the German Geoscientific Research and Development Program "GEOTECHNOLOGIEN" funded by the Federal Ministry of Education and Research (BMBF) and the German Reserach Foundation (DFG)"--Foreword

Includes bibliographical references

Description and Table of Contents

Description

The research work on the topic of ''Tomography of the Earth's Crust: From Geophysical Sounding to Real-Time Monitoring'' has focused on the development of cross-scale multiparameter methods and their technological application together with the development of innovative field techniques. Seismic wave field inversion theory, diffusion and potential methods were developed and optimized with respect to cost and benefit aspects. This volume summarizes the scientific results of nine interdisciplinary joint projects funded by the German Federal Ministry of Education and Research in the framework of the Research and Development Program GEOTECHNOLOGIEN. Highlights and innovations presented cover many length scales and involve targets ranging from applications in the laboratory, to ground water surveys of heterogeneous aquifer, geotechnical applications like tunnel excavation, coal mine and CO2 monitoring and the imaging and monitoring of tectonic and societally relevant objects as active faults and volcanoes. To study these objects, the authors use the full spectrum of geophysical methods (ultrasonics, seismic and seismology, electromagnetics, gravity, and airborne) in combination with new methods like seismic interferometry, diffuse wave field theory and full-wave-form inversion in 3D and partially also in 4D. Geophysical Sounding to Real-Time Monitoring'' has focused on the development of cross-scale multiparameter methods and their technological application together with the development of innovative field techniques. Seismic wave field inversion theory, diffusion and potential methods were developed and optimized with respect to cost and benefit aspects. This volume summarizes the scientific results of nine interdisciplinary joint projects funded by the German Federal Ministry of Education and Research in the framework of the Research and Development Program GEOTECHNOLOGIEN. Highlights and innovations presented cover many length scales and involve targets ranging from applications in the laboratory, to ground water surveys of heterogeneous aquifer, geotechnical applications like tunnel excavation, coal mine and CO2 monitoring and the imaging and monitoring of tectonic and societally relevant objects as active faults and volcanoes. To study these objects, the authors use the full spectrum of geophysical methods (ultrasonics, seismic and seismology, electromagnetics, gravity, and airborne) in combination with new methods like seismic interferometry, diffuse wave field theory and full-wave-form inversion in 3D and partially also in 4D. 2 monitoring and the imaging and monitoring of tectonic and societally relevant objects as active faults and volcanoes. To study these objects, the authors use the full spectrum of geophysical methods (ultrasonics, seismic and seismology, electromagnetics, gravity, and airborne) in combination with new methods like seismic interferometry, diffuse wave field theory and full-wave-form inversion in 3D and partially also in 4D.

Table of Contents

4D Spectral Electrical Impedance Tomography (EIT) a diagnostic imaging tool for the characterization of subsurface structures and processes (4D-EIT).- From Airborne Data Inversion to In-Depth Analysis (AIDA).- Monitoring and Imaging based on Interferometric Concepts (MIIC).- Mining Environments: Continuous Monitoring and Simultaneous Inversion (MINE).- Three-dimensional Multi-Scale and Multi-Method Inversion to Determine the Electrical Conductivity Distribution of the Subsurface Using Parallel Computing Architectures (Multi-EM).- Multi-Scale S-Wave Tomography for Exploration and Risk Assessment of Development Sites (MuSaWa).- Seismic Observations for Underground Development (SOUND).- Toolbox for Applied Seismic Tomography (TOAST).- Tomographic Methods in Hydrogeology (TOMOME).

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top