Formulation of uncertainty relation between error and disturbance in quantum measurement by using quantum estimation theory
Author(s)
Bibliographic Information
Formulation of uncertainty relation between error and disturbance in quantum measurement by using quantum estimation theory
(Springer theses : recognizing outstanding Ph. D. research)
Springer, c2014
Available at 4 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references
Description and Table of Contents
Description
In this thesis, quantum estimation theory is applied to investigate uncertainty relations between error and disturbance in quantum measurement. The author argues that the best solution for clarifying the attainable bound of the error and disturbance is to invoke the estimation process from the measurement outcomes such as signals from a photodetector in a quantum optical system. The error and disturbance in terms of the Fisher information content have been successfully formulated and provide the upper bound of the accuracy of the estimation. Moreover, the attainable bound of the error and disturbance in quantum measurement has been derived.
The obtained bound is determined for the first time by the quantum fluctuations and correlation functions of the observables, which characterize the non-classical fluctuation of the observables. The result provides the upper bound of our knowledge obtained by quantum measurements.
The method developed in this thesis will be applied to a broad class of problems related to quantum measurement to build a next-generation clock standard and to successfully detect gravitational waves.
Table of Contents
Introduction.- Reviews of Uncertainty Relations.- Classical Estimation Theory.- Quantum Estimation Theory.- Expansion of Linear Operators by Generators of Lie Algebra su(d).- Lie Algebraic Approach to the Fisher Information Contents.- Error and Disturbance in Quantum Measurements.- Uncertainty Relations between Measurement Errors of Two Observables.- Uncertainty Relations between Error and Disturbance in Quantum Measurements.- Summary and Discussion.
by "Nielsen BookData"