Modeling the ionosphere-thermosphere system
Author(s)
Bibliographic Information
Modeling the ionosphere-thermosphere system
(Geophysical monograph, 201)
American Geophysical Union, c2013
Available at / 6 libraries
-
Institute for Space–Earth Environmental Research, Nagoya University宇宙地球研1
450.12||H||||太陽図書室41598671
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 201. Modeling the Ionosphere-Thermosphere System brings together for the first time a detailed description of the physics of the IT system in conjunction with numerical techniques to solve the complex system of equations that describe the system, as well as issues of current interest. Volume highlights include discussions of:
Physics of the ionosphere and thermosphere IT system, and the numerical methods to solve the basic equations of the IT system
The physics and numerical methods to determine the global electrodynamics of the IT system
The response of the IT system to forcings from below (i.e., the lower atmosphere) and from above (i.e., the magnetosphere)
The physics and numerical methods to model ionospheric irregularities
Data assimilation techniques, comparison of model results to data, climate variability studies, and applications to space weather
Providing a clear description of the physics of this system in several tutorial-like articles, Modeling the Ionosphere-Thermosphere System is of value to the upper atmosphere science community in general. Chapters describing details of the numerical methods used to solve the equations that describe the IT system make the volume useful to both active researchers in the field and students.
Table of Contents
Preface
Joseph D. Huba, Robert W. Schunk, and George V. Khanzanov vii
Introduction
Joseph D. Huba, Robert W. Schunk, and George V. Khanzanov 1
Section I: Physical Processes
Ionosphere-Thermosphere Physics: Current Status and Problems
R. W. Schunk 3
Physical Characteristics and Modeling of Earth's Thermosphere
Tim Fuller-Rowell 13
Solar Cycle Changes in the Photochemistry of the Ionosphere and Thermosphere
P. G. Richards 29
Energetics and Composition in the Thermosphere
A. G. Burns, W. Wang, S. C. Solomon, and L. Qian 39
Section II: Numerical Methods
Numerical Methods in Modeling the Ionosphere
J. D. Huba and G. Joyce 49
Ionospheric Electrodynamics Modeling
A. D. Richmond and A. Maute 57
Section III: IT Models
The NCAR TIE-GCM: A Community Model of the Coupled Thermosphere/Ionosphere System
Liying Qian, Alan G. Burns, Barbara A. Emery, Benjamin Foster, Gang Lu, Astrid Maute, Arthur D. Richmond, Raymond G. Roble, Stanley C. Solomon, and Wenbin Wang 73
The Global Ionosphere-Thermosphere Model and the Nonhydrostatics Processes
Yue Deng and Aaron J. Ridley 85
Traveling Atmospheric Disturbance and Gravity Wave Coupling in the Thermosphere
L. C. Gardner and R. W. Schunk 101
Air Force Low-Latitude Ionospheric Model in Support of the C/NOFS Mission
Yi-Jiun Su, John M. Retterer, Ronald G. Caton, Russell A. Stoneback, Robert F. Pfaff, Patrick A. Roddy, and Keith M. Groves 107
Long-Term Simulations of the Ionosphere Using SAMI3
S. E. Mcdonald, J. L. Lean, J. D. Huba, G. Joyce, J. T. Emmert, and D. P. Drob 119
Section IV: Validation of IT Models
Comparative Studies of Theoretical Models in the Equatorial Ionosphere
Tzu-Wei Fang, David Anderson, Tim Fuller-Rowell, Rashid Akmaev, Mihail Codrescu, George Millward, Jan Sojka, Ludger Scherliess, Vince Eccles, John Retterer, Joe Huba, Glenn Joyce, Art Richmond, Astrid Maute, Geoff Crowley, Aaron Ridley, and Geeta Vichare 133
Systematic Evaluation of Ionosphere/Thermosphere (IT) Models: CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge (2009-2010)
J. S. Shim, M. Kuznetsova, L. Rastatter, D. Bilitza, M. Butala, M. Codrescu, B. A. Emery, B. Foster, T. J. Fuller-Rowell, J. Huba, A. J. Mannucci, X. Pi, A. Ridley, L. Scherliess, R. W. Schunk, J. J. Sojka, P. Stephens, D. C. Thompson, D. Weimer, L. Zhu, D. Anderson, J. L. Chau, and E. Sutton 145
Section V: IT Coupling: Above and Below
Aspect of Coupling Processes in the Ionosphere and Thermosphere
R. A. Heelis 161
Use of NOGAPS-ALPHA as a Bottom Boundary for the NCAR/TIEGCM
David E. Siskind and Douglas P. Drob 171
WACCM-X Simulation of Tidal and Planetary Wave Variability in the Upper Atmosphere
H.-L. Liu 181
Inductive-Dynamic Coupling of the Ionosphere With the Thermosphere and the Magnetosphere
P. Song and V. M. Vasyliunas 201
Section VI: Equatorial Ionospheric Processes
Ionospheric Irregularities: Frontiers
D. L. Hysell, H. C. Aveiro, and J. L. Chau 217
Three-Dimensional Numerical Simulations of Equatorial Spread F: Results and Diagnostics in the Peruvian Sector
H. C. Aveiro and D. L. Hysell 241
Density and Temperature Structure of Equatorial Spread F Plumes
J. Krall and J. D. Huba 251
Low-Latitude Ionosphere and Thermosphere: Decadal Observations From the CHAMP Mission
Claudia Stolle and Huixin Liu 259
Section VII: Data Assimilation
Upper Atmosphere Data Assimilation With an Ensemble Kalman Filter
Tomoko Matsuo 273
Scientific Investigation Using IDA4D and EMPIRE
G. S. Bust and S. Datta-Barua 283
Section VIII: Applications
Customers and Requirements for Ionosphere Products and Services
Rodney Viereck, Joseph Kunches, Mihail Codrescu, and Robert Steenburgh 299
Model-Based Inversion of Auroral Processes
Joshua Semeter and Matthew Zettergren 309
AGU Category Index 323
Index 325
by "Nielsen BookData"