Adaptive filter theory

書誌事項

Adaptive filter theory

Simon Haykin

(Always learning)

Pearson, c2014

5th ed., International ed

  • : pbk

大学図書館所蔵 件 / 12

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 864-878) and index

内容説明・目次

内容説明

<> Adaptive Filter Theory, 5e, is ideal for courses in Adaptive Filters. Haykin examines both the mathematical theory behind various linear adaptive filters and the elements of supervised multilayer perceptrons. In its fifth edition, this highly successful book has been updated and refined to stay current with the field and develop concepts in as unified and accessible a manner as possible.

目次

Chapter 1 Stochastic Processes and Models Chapter 2 Wiener Filters Chapter 3 Linear Prediction Chapter 4 Method of Steepest Descent Chapter 5 Method of Stochastic Gradient Descent Chapter 6 The Least-Mean-Square (LMS) Algorithm Chapter 7 Normalized Least-Mean-Square (LMS) Algorithm and Its Generalization Chapter 8 Block-Adaptive Filters Chapter 9 Method of Least Squares Chapter 10 The Recursive Least-Squares (RLS) Algorithm Chapter 11 Robustness Chapter 12 Finite-Precision Effects Chapter 13 Adaptation in Nonstationary Environments Chapter 14 Kalman Filters Chapter 15 Square-Root Adaptive Filters Chapter 16 Order-Recursive Adaptive Filters Chapter 17 Blind Deconvolution

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB15785451
  • ISBN
    • 9780273764083
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Upper Saddle River, N.J.
  • ページ数/冊数
    907 p.
  • 大きさ
    24 cm
  • 件名
  • 親書誌ID
ページトップへ