Linear algebra for engineers and scientists : using MATLAB
著者
書誌事項
Linear algebra for engineers and scientists : using MATLAB
(Pearson international edition)
Pearson Prentice Hall, Pearson Education International, c2005
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
For a one-semester introductory course. Although the text has been developed in the context of engineering and physical science, it is also suitable for computer science students, math majors, and other quantitative fields.
The most carefully written and clearest written text in linear algebra, motivates students in applied areas by placing linear algebra in context through current applications, anecdotes and historical references. Although it may be used without machine computation, the use of MATLAB is encouraged in a unique and innovative way.
目次
(NOTE: A (historic) profile and introduction are keynotes to each chapter.)
1. Linear Systems.
Solving Linear Systems. Echelon Forms, Rank. Applications.
2. Matrices.
Matrix Algebra. Inverses. LU-Factorization. Applications.
3. Vectors.
Spaces of Vectors. Linear Independence, Bases, Dimension. Null Space, Column Space, Row Space. Linear Transformations on Rn.
4. Orthogonality.
Dot Product, Norm. Orthogonal Sets, Orthogonal Matrices. Orthogonal Subspaces, Projections, Bases. Applications.
5. Determinants.
Definition and Computation. Inverses and Products.
6. Eigenvalue Problems.
Eigenvalues and Eigenvectors. Diagonalization. Applied Eignevalue Problems. Markov Chains. Systems of Linear Differential Equations.
7. Vector Spaces.
Vector Spaces and Subspaces. Linear Independence, Basis, Dimension. Coordinates, Linear Transformations.
8. Complex Numbers.
Algebraic Theory. Geometric Theory. Polar Form. Extraction of Roots, Polynomials. Linear Algebra: The Complex Case.
9. Linear Programming.
Standard Forms, Geometrical Methods. The Simplex Algorithm. Duality. Mixed Constraints.
Appendix A: MATLAB.
Appendix B: TOOLBOX.
Answers to Selected Odd-Numbered Exercises
Index.
「Nielsen BookData」 より