Sequential analysis : hypothesis testing and changepoint detection
著者
書誌事項
Sequential analysis : hypothesis testing and changepoint detection
(Monographs on statistics and applied probability, 136)
CRC Press, Taylor & Francis Group Taylor & Francis, c2015
大学図書館所蔵 全12件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Sequential Analysis: Hypothesis Testing and Changepoint Detection systematically develops the theory of sequential hypothesis testing and quickest changepoint detection. It also describes important applications in which theoretical results can be used efficiently.
The book reviews recent accomplishments in hypothesis testing and changepoint detection both in decision-theoretic (Bayesian) and non-decision-theoretic (non-Bayesian) contexts. The authors not only emphasize traditional binary hypotheses but also substantially more difficult multiple decision problems. They address scenarios with simple hypotheses and more realistic cases of two and finitely many composite hypotheses. The book primarily focuses on practical discrete-time models, with certain continuous-time models also examined when general results can be obtained very similarly in both cases. It treats both conventional i.i.d. and general non-i.i.d. stochastic models in detail, including Markov, hidden Markov, state-space, regression, and autoregression models. Rigorous proofs are given for the most important results.
Written by leading authorities in the field, this book covers the theoretical developments and applications of sequential hypothesis testing and sequential quickest changepoint detection in a wide range of engineering and environmental domains. It explains how the theoretical aspects influence the hypothesis testing and changepoint detection problems as well as the design of algorithms.
目次
Motivations for the sequential approach. Background on probability and statistics. Sequential Hypothesis Testing: Sequential hypothesis testing-Two simple hypotheses. Sequential hypothesis testing-Multiple simple hypotheses. Sequential hypothesis testing-Composite hypotheses. Change-Point Detection: Statistical models with changes-Problem formulations and optimality criteria. Sequential change-point detection-Bayesian approach. Sequential change-point detection-Non-Bayesian approaches. Multichart change-point detection procedures for composite hypotheses and multipopulation models. Sequential change-point detection and isolation. Applications: Selected applications.
「Nielsen BookData」 より