Quantum groups
著者
書誌事項
Quantum groups
(Graduate texts in mathematics, 155)
Springer Science+Business Media, [201-]
- : softcover
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Originally publisehd by Springer-Verlag, New York, Inc in 1995. Soft cover reprint of the hardcover 1st edition 1995"--T.p. verso
Includes bibliographical reference(p. [506]-521) and indexes
内容説明・目次
内容説明
Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.
目次
Content.- One Quantum SL(2).- I Preliminaries.- 1 Algebras and Modules.- 2 Free Algebras.- 3 The Affine Line and Plane.- 4 Matrix Multiplication.- 5 Determinants and Invertible Matrices.- 6 Graded and Filtered Algebras.- 7 Ore Extensions.- 8 Noetherian Rings.- 9 Exercises.- 10 Notes.- II Tensor Products.- 1 Tensor Products of Vector Spaces.- 2 Tensor Products of Linear Maps.- 3 Duality and Traces.- 4 Tensor Products of Algebras.- 5 Tensor and Symmetric Algebras.- 6 Exercises.- 7 Notes.- III The Language of Hopf Algebras.- 1 Coalgebras.- 2 Bialgebras.- 3 Hopf Algebras.- 4 Relationship with Chapter I The Hopf Algebras GL(2) and SL(2).- 5 Modules over a Hopf Algebra.- 6 Comodules.- 7 Comodule-Algebras Coaction of SL(2) on the Affine Plane.- 8 Exercises.- 9 Notes.- IV The Quantum Plane and Its Symmetries.- 1 The Quantum Plane.- 2 Gauss Polynomials and the q-Binomial Formula.- 3 The Algebra Mq(2).- 4 Ring-Theoretical Properties of Mq(2).- 5 Bialgebra Structure on Mq(2).- 6 The Hopf Algebras GLq(2) and SLq(2).- 7 Coaction on the Quantum Plane.- 8 Hopf *-Algebras.- 9 Exercises.- 10 Notes.- V The Lie Algebra of SL(2).- 1 Lie Algebras.- 2 Enveloping Algebras.- 3 The Lie Algebra sl(2).- 4 Representations of sl(2).- 5 The Clebsch-Gordan Formula.- 6 Module-Algebra over a Bialgebra Action of sl(2) on the Afflne Plane.- 7 Duality between the Hopf Algebras U(sl(2)) and sl(2).- 8 Exercises.- 9 Notes.- VI The Quantum Enveloping Algebra of sl(2).- 1 The Algebra Uq (sl(2)).- 2 Relationship with the Enveloping Algebra of sl(2).- 3 Representations of Uq.- 4 The Harish-Chandra Homomorphism and the Centre of Uq.- 5 Case when q is a Root of Unity.- 6 Exercises.- 7 Notes.- VII A Hopf Algebra Structure on Uq(sl(2)).- 1 Comultiplication.- 2 Semisimplicity.- 3 Action of Uq(sl(2))on the Quantum Plane.- 4 Duality between the Hopf Algebras Uq (sl(2))and SLq(2).- 5 Duality between Uq(sl(2))-Modules and SLq(2)-Comodules.- 6 Scalar Products on Uq(sl(2)) -Modules.- 7 Quantum Clebsch-Gordan.- 8 Exercises.- 9 Notes.- Two Universal R-Matrices.- VIII The Yang-Baxter Equation and (Co)Braided Bialgebras.- 1 The Yang-Baxter Equation.- 2 Braided Bialgebras.- 3 How a Braided Bialgebra Generates R-Matrices.- 4 The Square of the Antipode in a Braided Hopf Algebra.- 5 A Dual Concept: Cobraided Bialgebras.- 6 The FRT Construction.- 7 Application to GLq(2)and SLq(2).- 8 Exercises.- 9 Notes.- IX Drinfeld's Quantum Double.- 1 Bicrossed Products of Groups.- 2 Bicrossed Products of Bialgebras.- 3 Variations on the Adjoint Representation.- 4 Drinfeld's Quantum Double.- 5 Representation-Theoretic Interpretation of the Quantum Double.- 6 Application to Uq(sl(2)).- 7 R-Matrices for.- 8 Exercises.- 9 Notes.- Three Low-Dimensional Topology and Tensor Categories.- X Knots, Links, Tangles, and Braids.- 1 Knots and Links.- 2 Classification of Links up to Isotopy.- 3 Link Diagrams.- 4 The Jones-Conway Polynomial.- 5 Tangles.- 6 Braids.- 7 Exercises.- 8 Notes.- 9 Appendix The Fundamental Group.- XI Tensor Categories.- 1 The Language of Categories and Functors.- 2 Tensor Categories.- 3 Examples of Tensor Categories.- 4 Tensor Functors.- 5 Turning Tensor Categories into Strict Ones.- 6 Exercises.- 7 Notes.- XII The Tangle Category.- 1 Presentation of a Strict Tensor Category.- 2 The Category of Tangles.- 3 The Category of Tangle Diagrams.- 4 Representations of the Category of Tangles.- 5 Existence Proof for Jones-Conway Polynomial.- 6 Exercises.- 7 Notes.- XIII Braidings.- 1 Braided Tensor Categories.- 2 The Braid Category.- 3 Universality of the Braid Category.- 4 The Centre Construction.- 5 A Categorical Interpretation of the Quantum Double.- 6 Exercises.- 7 Notes.- XIV Duality in Tensor Categories.- 1 Representing Morphisms in a Tensor Category.- 2 Duality.- 3 Ribbon Categories.- 4 Quantum Trace and Dimension.- 5 Examples of Ribbon Categories.- 6 Ribbon Algebras.- 7 Exercises.- 8 Notes.- XV Quasi-Bialgebras.- 1 Quasi-Bialgebras.- 2 Braided Quasi-Bialgebras.- 3 Gauge Transformations.- 4 Braid Group Representations.- 5 Quasi-Hopf Algebras.- 6 Exercises.- 7 Notes.- Four Quantum Groups and Monodromy.- XVI Generalities on Quantum Enveloping Algebras.- 1 The Ring of Formal Series and h-Adic Topology.- 2 Topologically Free Modules.- 3 Topological Tensor Product.- 4 Topological Algebras.- 5 Quantum Enveloping Algebras.- 6 Symmetrizing the Universal R-Matrix.- 7 Exercises.- 8 Notes.- 9 Appendix Inverse Limits.- XVII Drinfeld and Jimbo's Quantum Enveloping Algebras.- 1 Semisimple Lie Algebras.- 2 Drinfeld-Jimbo Algebras.- 3 Quantum Group Invariants of Links.- 4 The Case of sl(2).- 5 Exercises.- 6 Notes.- XVIII Cohomology and Rigidity Theorems.- 1 Cohomology of Lie Algebras.- 2 Rigidity for Lie Algebras.- 3 Vanishing Results for Semisimple Lie Algebras.- 4 Application to Drinfeld-Jimbo Quantum Enveloping Algebras.- 5 Cohomology of Coalgebras.- 6 Action of a Semisimple Lie Algebra on the Cobar Complex.- 7 Computations for Symmetric Coalgebras.- 8 Uniqueness Theorem for Quantum Enveloping Algebras.- 9 Exercises.- 10 Notes.- 11 Appendix Complexes and Resolutions.- XIX Monodromy of the Knizhnik-Zamolodchikov Equations.- 1 Connections.- 2 Braid Group Representations from Monodromy.- 3 The Knizhnik-Zamolodchikov Equations.- 4 The Drinfeld-Kohno Theorem.- 5 Equivalence of Uh(g)and Ag,t.- 6 Drinfeld's Associator.- 7 Construction of the Topological Braided Quasi-Bialgebra Ag,t.- 8 Verification of the Axioms.- 9 Exercises.- 10 Notes.- 11 Appendix Iterated Integrals.- XX Postlude A Universal Knot Invariant.- 1 Knot Invariants of Finite Type.- 2 Chord Diagrams and Kontsevich's Theorem.- 3 Algebra Structures on Chord Diagrams.- 4 Infinitesimal Symmetric Categories.- 5 A Universal Category for Infinitesimal Braidings.- 6 Formal Integration of Infinitesimal Symmetric Categories.- 7 Construction of Kontsevich's Universal Invariant.- 8 Recovering Quantum Group Invariants.- 9 Exercises.- 10 Notes.- References.
「Nielsen BookData」 より