Multivariate analysis of ecological data using Canoco 5
著者
書誌事項
Multivariate analysis of ecological data using Canoco 5
Cambridge University Press, 2014
2nd ed
- : pbk
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [351]-358) and indexes
内容説明・目次
内容説明
This revised and updated edition focuses on constrained ordination (RDA, CCA), variation partitioning and the use of permutation tests of statistical hypotheses about multivariate data. Both classification and modern regression methods (GLM, GAM, loess) are reviewed and species functional traits and spatial structures analysed. Nine case studies of varying difficulty help to illustrate the suggested analytical methods, using the latest version of Canoco 5. All studies utilise descriptive and manipulative approaches, and are supported by data sets and project files available from the book website: http://regent.prf.jcu.cz/maed2/. Written primarily for community ecologists needing to analyse data resulting from field observations and experiments, this book is a valuable resource to students and researchers dealing with both simple and complex ecological problems, such as the variation of biotic communities with environmental conditions or their response to experimental manipulation.
目次
- Preface
- 1. Introduction and data types
- 2. Using Canoco 5
- 3. Experimental design
- 4. Basics of gradient analysis
- 5. Permutation tests and variation partitioning
- 6. Similarity measures and similarity-based methods
- 7. Classification methods
- 8. Regression methods
- 9. Interpreting community composition with functional traits
- 10. Advanced use of ordination
- 11. Visualising multivariate data
- 12. Case study 1: variation in forest bird assemblages
- 13. Case study 2: search for community composition patterns and their environmental correlates: vegetation of spring meadows
- 14. Case study 3: separating the effects of explanatory variables
- 15. Case study 4: evaluation of experiments in randomised complete blocks
- 16. Case study 5: analysis of repeated observations of species composition from a factorial experiment
- 17. Case study 6: hierarchical analysis of crayfish community variation
- 18. Case study 7: analysis of taxonomic data with linear discriminant analysis and distance-based ordination methods
- 19. Case study 8: separating effects of space and environment on oribatid community with PCNM
- 20. Case study 9: performing linear regression with redundancy analysis
- Appendix A. Glossary
- Appendix B. Sample data sets and projects
- Appendix C. Access to Canoco and overview of other software
- Appendix D. Working with R
- References
- Index to useful tasks in Canoco 5
- Index.
「Nielsen BookData」 より