Nanotechnology for the energy challenge
著者
書誌事項
Nanotechnology for the energy challenge
Wiley-VCH, c2013
2nd ed
- : hbk
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Previous edition: 2010
Includes bibliographical references and index
内容説明・目次
内容説明
With the daunting energy challenges faced by Mankind in the 21st century, revolutionary new technologies will be the key to a clean, secure and sustainable energy future. Nanostructures often have surprising and very useful capabilities and are thus paving the way for new methodologies in almost every kind of industry. This exceptional monograph provides an overview of the subject, and presents the current state of the art with regard to different aspects of sustainable production, efficient storage and low-impact use of energy. Comprised of eighteen chapters, the book is divided in three thematic parts: Part I Sustainable Energy Production covers the main developments of nanotechnology in clean energy production and conversion, including photovoltaics, hydrogen production, thermal-electrical energy conversion and fuel cells. Part II Efficient Energy Storage is concerned with the potential use of nanomaterials in more efficient energy storage systems such as advanced batteries, supercapacitors and hydrogen storage.
Part III Energy Sustainability shows how nanotechnology helps to use energy more efficiently, and the mitigation of impacts to the environment, with special emphasis on energy savings through green nanofabrication, advanced catalysis, nanostructured light-emitting and eletrochromic devices and CO2 capture by nanoporous materials . An essential addition to any bookshelf, it will be invaluable to a variety of research fields including materials science, chemical engineering, solid state, surface, industrial, and physical chemistry, as this is a subject that is very interdisciplinary.
目次
Foreword XV Preface to the 2nd Edition XVII Preface to the 1st Edition XIX List of Contributors XXI Part One Sustainable Energy Production 1 1 Nanotechnology for Energy Production 3 Elena Serrano, Kunhao Li, Guillermo Rus, and Javier Garcia-Martinez 1.1 Energy Challenges in the Twenty-first Century and Nanotechnology 3 1.2 Nanotechnology in Energy Production 6 1.2.1 Photovoltaics 6 1.2.2 Hydrogen Production 14 1.2.3 Fuel Cells 20 1.2.4 Thermoelectricity 27 1.3 New Opportunities 28 1.4 Outlook and Future Trends 33 Acknowledgments 34 References 34 2 Nanotechnology in Dye-Sensitized Photoelectrochemical Devices 41 Augustin J. McEvoy and Michael Gratzel 2.1 Introduction 41 2.2 Semiconductors and Optical Absorption 42 2.3 Dye Molecular Engineering 46 2.4 The Stable Self-Assembling Dye Monomolecular Layer 48 2.5 The Nanostructured Semiconductor 50 2.6 Recent Research Trends 52 2.7 Conclusions 54 References 54 3 Thermal-Electrical Energy Conversion from the Nanotechnology Perspective 57 Jian He and Terry M. Tritt 3.1 Introduction 57 3.2 Established Bulk Thermoelectric Materials 58 3.3 Selection Criteria for Bulk Thermoelectric Materials 61 3.4 Survey of Size Effects 63 3.4.1 Classic Size Effects 64 3.4.2 Quantum Size Effects 65 3.4.3 Thermoelectricity of Nanostructured Materials 66 3.5 Thermoelectric Properties on the Nanoscale: Modeling and Metrology 68 3.6 Experimental Results and Discussions 70 3.6.1 Bi Nanowire/Nanorod 70 3.6.2 Si Nanowire 72 3.6.3 Engineered Exotic Nanostructures 74 3.6.4 Thermionics 76 3.6.5 Thermoelectric Nanocomposites: a New Paradigm 78 3.7 Summary and Perspectives 83 Acknowledgments 84 References 84 4 Piezoelectric and Piezotronic Effects in Energy Harvesting and Conversion 89 Xudong Wang 4.1 Introduction 89 4.2 Piezoelectric Effect 90 4.3 Piezoelectric Nanomaterials for Mechanical Energy Harvesting 91 4.3.1 Piezoelectric Potential Generated in a Nanowire 92 4.3.2 Enhanced Piezoelectric Effect from Nanomaterials 94 4.3.3 Nanogenerators for Nanoscale Mechanical Energy Harvesting 96 4.3.3.1 Output of Piezoelectric Potential from Nanowires 96 4.3.3.2 The First Prototype Nanogenerator Driven by Ultrasonic Waves 98 4.3.3.3 Output Power Estimation 99 4.3.4 Large-Scale and High-Output Nanogenerators 101 4.3.4.1 Lateral ZnO Nanowire-Based Nanogenerators 101 4.3.4.2 Piezoelectric Polymer Thin Film-Based Nanogenerators 104 4.4 Piezocatalysis Conversion between Mechanical and Chemical Energies 109 4.4.1 Fundamental Principles of Piezocatalysis 109 4.4.2 Piezocatalyzed Water Splitting 110 4.4.3 Basic Kinetics of Piezocatalyzed Water Splitting 112 4.5 Piezotronics for Enhanced Energy Conversion 114 4.5.1 What is the Piezotronic Effect? 115 4.5.2 Band Structure Engineering by Piezotronic Effect 115 4.5.2.1 Remnant Polarization in Strained Piezoelectric Materials 115 4.5.2.2 Interface Band Engineering by Remnant Piezopotential 116 4.5.2.3 Quantitative Study of Interface Barrier Height Engineering 118 4.5.3 Piezotronics Modulated Photovoltaic Effect 120 4.5.3.1 Principle of Piezotronic Band Structure Engineering 120 4.5.3.2 Piezoelectric Polarization-Enhanced Photovoltaic Performance 122 4.6 Perspectives and Conclusion 125 Acknowledgments 127 References 127 5 Graphene for Energy Production and Storage Applications 133 Dale A.C. Brownson, Jonathan P. Metters, and Craig E. Banks 5.1 Introduction 133 5.2 Graphene Supercapacitors 135 5.3 Graphene as a Battery/Lithium-Ion Storage 147 5.4 Graphene in Energy Generation Devices 158 5.4.1 Fuel Cells 158 5.4.2 Microbial Biofuel Cells 161 5.4.3 Enzymatic Biofuel Cells 166 5.5 Conclusions/Outlook 167 References 168 6 Nanomaterials for Fuel Cell Technologies 171 Antonino Salvatore Arico, Vincenzo Baglio, and Vincenzo Antonucci 6.1 Introduction 171 6.2 Low-Temperature Fuel Cells 172 6.2.1 Cathode Reaction 172 6.2.2 Anodic Reaction 178 6.2.3 Practical Fuel Cell Catalysts 180 6.2.4 Nonprecious Catalysts 189 6.2.5 Electrolytes 189 6.2.6 High-Temperature Polymer Electrolyte Membranes 191 6.2.7 Membrane Electrode Assembly 196 6.3 High-Temperature Fuel Cells 198 6.3.1 High-Temperature Ceramic Electrocatalysts 201 6.3.2 Direct Utilization of Dry Hydrocarbons in SOFCs 204 6.4 Conclusions 205 References 207 7 Nanocatalysis for Iron-Catalyzed Fischer Tropsch Synthesis: One Perspective 213 Uschi M. Graham, Gary Jacobs, and Burtron H. Davis 7.1 Introduction 213 7.2 Nanocatalyst Wax Separation 213 7.2.1 Commercial Nanosized Iron Oxide 215 7.2.2 Nanosized Iron Oxide by Gas Phase Pyrolysis 218 7.2.3 Spray-Dried Clusters of Nanosized Iron Oxide 218 7.2.4 Precipitation of Unsymmetrical Nanosized Iron Oxide 220 7.2.5 Supported Iron Oxide Nanoparticles 221 7.2.6 Precipitation of Nanosized Iron Oxide Particles 225 7.3 Summary 229 References 229 8 The Contribution of Nanotechnology to Hydrogen Production 233 Sambandam Anandan, Jagannathan Madhavan, and Muthupandian Ashokkumar 8.1 Introduction 233 8.2 Hydrogen Production by Semiconductor Nanomaterials 235 8.2.1 General Approach 235 8.2.2 Need for Nanomaterials 236 8.2.3 Nanomaterials-Based Photoelectrochemical Cells for H2 Production 237 8.2.4 Semiconductors with Specific Morphology: Nanotubes and Nanodisks 239 8.2.5 Sensitization 245 8.3 Summary 253 Acknowledgments 254 References 254 Part Two Efficient Energy Storage 259 9 Nanostructured Materials for Hydrogen Storage 261 Saghar Sepehri and Guozhong Cao 9.1 Introduction 261 9.2 Hydrogen Storage by Physisorption 262 9.2.1 Nanostructured Carbon 263 9.2.2 Zeolites 264 9.2.3 Metal Organic Frameworks 265 9.2.4 Clathrates 265 9.2.5 Polymers with Intrinsic Microporosity 266 9.3 Hydrogen Storage by Chemisorption 266 9.3.1 Metal and Complex Hydrides 266 9.3.2 Chemical Hydrides 269 9.3.3 Nanocomposites 270 9.4 Summary 273 References 273 10 Electrochemical Energy Storage: the Benefits of Nanomaterials 277 Patrice Simon and Jean-Marie Tarascon 10.1 Introduction 277 10.2 Nanomaterials for Energy Storage 280 10.2.1 From Rejected Insertion Materials to Attractive Electrode Materials 280 10.2.2 The Use of Once Rejected Si-Based Electrodes 282 10.2.3 Conversion Reactions 283 10.3 Nanostructured Electrodes and Interfaces for the Electrochemical Storage of Energy 285 10.3.1 Nanostructuring of Current Collectors/Active Film Interface 285 10.3.1.1 Self-Supported Electrodes 285 10.3.1.2 Nano-Architectured Current Collectors 285 10.3.2 Nanostructuring of Active Material/Electrolyte Interfaces 290 10.3.2.1 Application to Li-Ion Batteries: Mesoporous Chromium Oxides 290 10.3.2.2 Application to Electrochemical Double-Layer Capacitors 291 10.4 Conclusion 296 Acknowledgments 297 References 297 11 Carbon-Based Nanomaterials for Electrochemical Energy Storage 299 Elzbieta Frackowiak and Francois Beguin 11.1 Introduction 299 11.2 Nanotexture and Surface Functionality of sp2 Carbons 299 11.3 Supercapacitors 302 11.3.1 Principle of a Supercapacitor 302 11.3.2 Carbons for Electric Double-Layer Capacitors 304 11.3.3 Carbon-Based Materials for Pseudo-Capacitors 307 11.3.3.1 Pseudo-Capacitance Effects Related with Hydrogen Electrosorbed in Carbon 307 11.3.3.2 Pseudo-Capacitive Oxides and Conducting Polymers 310 11.3.3.3 Pseudo-Capacitive Effects Originated from Heteroatoms in the Carbon Network 312 11.4 Lithium-Ion Batteries 316 11.4.1 Anodes Based on Nanostructured Carbons 317 11.4.2 Anodes Based on Si/C Composites 318 11.4.3 Origins of Irreversible Capacity of Carbon Anodes 321 11.5 Conclusions 323 References 324 12 Nanotechnologies to Enable High-Performance Superconductors for Energy Applications 327 Claudia Cantoni and Amit Goyal 12.1 Overcoming Limitations to Superconductors Performance 327 12.2 Flux Pinning by Nanoscale Defects 329 12.3 Grain Boundary Problem 330 12.4 Anisotropic Current Properties 332 12.5 Enhancing Naturally Occurring Nanoscale Defects 335 12.6 Artifi cial Introduction of Flux Pinning Nanostructures 337 12.7 Self-Assembled Nanostructures 338 12.8 Effect of Local Strain Fields in Nanocomposite Films 344 12.9 Control of Epitaxy Enabling Atomic Sulfur Superstructure 347 Acknowledgments 349 References 350 Part Three Energy Sustainability 355 13 Green Nanofabrication: Unconventional Approaches for the Conservative Use of Energy 357 Darren J. Lipomi, Emily A. Weiss, and George M. Whitesides 13.1 Introduction 357 13.1.1 Motivation 358 13.1.2 Energetic Costs of Nanofabrication 359 13.1.3 Use of Tools 360 13.1.4 Nontraditional Materials 362 13.1.5 Scope 362 13.2 Green Approaches to Nanofabrication 364 13.2.1 Molding and Embossing 364 13.2.1.1 Hard Pattern Transfer Elements 364 13.2.1.2 Soft Pattern Transfer Elements 366 13.2.1.3 Outlook 369 13.2.2 Printing 370 13.2.2.1 Microcontact Printing 370 13.2.2.2 Dip-Pen Nanolithography 371 13.2.2.3 Outlook 372 13.2.3 Edge Lithography by Nanoskiving 372 13.2.3.1 The Ultramicrotome 374 13.2.3.2 Nanowires with Controlled Dimensions 374 13.2.3.3 Open- and Closed-Loop Structures 374 13.2.3.4 Linear Arrays of Single-Crystalline Nanowires 375 13.2.3.5 Conjugated Polymer Nanowires 378 13.2.3.6 Nanostructured Polymer Heterojunctions 379 13.2.3.7 Outlook 384 13.2.4 Shadow Evaporation 385 13.2.4.1 Hollow Inorganic Tubes 385 13.2.4.2 Outlook 387 13.2.5 Electrospinning 389 13.2.5.1 Scanned Electrospinning 390 13.2.5.2 Uniaxial Electrospinning 391 13.2.5.3 Core/Shell and Hollow Nanofibers 391 13.2.5.4 Outlook 393 13.2.6 Self-Assembly 393 13.2.6.1 Hierarchical Assembly of Nanocrystals 394 13.2.6.2 Block Copolymers 395 13.2.6.3 Outlook 397 13.3 Future Directions: Toward Zero-Cost Fabrication 397 13.3.1 Scotch-Tape Method for the Preparation of Graphene Films 397 13.3.2 Patterned Paper as a Low-Cost Substrate 398 13.3.3 Shrinky-Dinks for Soft Lithography 398 13.4 Conclusions 400 Acknowledgments 401 References 401 14 Nanocatalysis for Fuel Production 407 Gary Jacobs and Burtron H. Davis 14.1 Introduction 407 14.2 Petroleum Refining 408 14.3 Naphtha Reforming 408 14.4 Hydrotreating 420 14.5 Cracking 425 14.6 Hydrocracking 427 14.7 Conversion of Syngas 427 14.7.1 Water Gas Shift 427 14.7.2 Methanol Synthesis 438 14.7.3 Fischer Tropsch Synthesis 442 14.7.4 Methanation 451 14.8 Nanocatalysis for Bioenergy 454 14.9 The Future 461 References 462 15 Surface-Functionalized Nanoporous Catalysts towards Biofuel Applications 473 Brian G. Trewyn 15.1 Introduction 473 15.1.1 Single Site Heterogeneous Catalysis 474 15.1.2 Techniques for the Characterization of Heterogeneous Catalysts 475 15.2 Immobilization Strategies of Single Site Heterogeneous Catalysts 476 15.2.1 Supported Materials 476 15.2.2 Conventional Methods of Functionalization on Silica Surfaces 478 15.2.2.1 Noncovalent Binding of Homogeneous Catalysts 478 15.2.2.2 Surface Immobilization of Catalysts through Covalent Bonds 480 15.2.3 Alternative Synthesis of Immobilized Complex Catalysts on the Solid Support 487 15.3 Design of More Efficient Heterogeneous Catalysts with Enhanced Reactivity and Selectivity 488 15.3.1 Surface Interaction of Silica and Immobilized Homogeneous Catalysts 488 15.3.2 Reactivity Enhancement of Heterogeneous Catalytic System Induced by Site Isolation 491 15.3.3 Introduction of Functionalities and Control of Silica Support Morphology 494 15.3.4 Selective Surface Functionalization of Solid Support for Utilization of Nanospace Inside the Porous Structure 497 15.3.5 Cooperative Catalysis by Multifunctionalized Heterogeneous Catalyst System 503 15.3.6 Tuning the Selectivity of Multifunctionalized Heterogeneous Catalysts by the Gatekeeping Effect 504 15.3.7 Synergistic Catalysis by General Acid and Base Bifunctionalized MSN Catalysts 507 15.4 Other Heterogeneous Catalyst Systems on Nonsilica Supports 512 15.5 Conclusion 512 References 513 16 Nanotechnology for Carbon Dioxide Capture 517 Richard R. Willis, Annabelle Benin, Randall Q. Snurr, and Ozgur Yazaydyn 16.1 Introduction 517 16.2 CO2 Capture Processes 522 16.3 Nanotechnology for CO2 Capture 524 16.4 Porous Coordination Polymers for CO2 Capture 529 References 553 17 Nanostructured Organic Light-Emitting Devices 561 Juo-Hao Li, Jinsong Huang, and Yang Yang 17.1 Introduction 561 17.2 Quantum Confinement and Charge Balance for OLEDs and PLEDs 563 17.2.1 Multilayer Structured OLEDs and PLEDs 563 17.2.2 Charge Balance in a Polymer Blended System 564 17.2.3 Interfacial Layer and Charge Injection 569 17.2.3.1 I V Characteristics 570 17.2.3.2 Built-in Potential from Photovoltaic Measurement 571 17.2.3.3 XPS/UPS Study of the Interface 573 17.2.3.4 Comparison with Cs/Al Cathode 578 17.3 Phosphorescent Materials for OLEDs and PLEDs 579 17.3.1 Fluorescence and Phosphorescent Materials 579 17.3.2 Solution-Processed Phosphorescent Materials 580 17.4 Multi-Photon Emission and Tandem Structure for OLEDs and PLEDs 586 17.5 The Enhancement of Light Out-Coupling 587 17.6 Outlook for the Future of Nanostructured OLEDs and PLEDs 589 17.7 Conclusion 590 References 590 18 Electrochromics for Energy-Effi cient Buildings: Nanofeatures, Thin Films, and Devices 593 Claes-Goran Granqvist 18.1 Introduction 593 18.2 Electrochromic Materials 595 18.2.1 Functional Principles and Basic Materials 595 18.2.2 The Role of Nanostructure 598 18.2.3 The Cause of Optical Absorption 600 18.2.4 Survey over Transparent Conducting Thin Films 603 18.2.5 Electrolyte Functionalization 605 18.3 Electrochromic Devices 607 18.3.1 Six Challenges 607 18.3.2 Practical Constructions of Devices: a Brief Survey 608 18.3.3 Data on Foil-Based Devices with W Oxide and Ni Oxide 609 18.4 Conclusions and Remarks 612 References 613 Index 619
「Nielsen BookData」 より