Axial flux permanent magnet brushless machines
著者
書誌事項
Axial flux permanent magnet brushless machines
Springer, c2008
2nd ed
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [335]-350) and index
HTTP:URL=http://www.loc.gov/catdir/enhancements/fy0904/2008925238-d.html Information=Publisher description
HTTP:URL=http://www.loc.gov/catdir/enhancements/fy0904/2008925238-t.html Information=Table of contents only
内容説明・目次
内容説明
Axial Flux Permanent Magnet (AFPM) brushless machines are modern electrical machines with a lot of advantages over their conventional counterparts. This timeless and revised second edition deals with the analysis, construction, design, control and applications of AFPM machines. The authors present their own research results, as well as significant research contributions made by others.
目次
- Introduction
- 1.1 Scope
- 1.2 Features
- 1.3 Development of AFPM Machines
- 1.4 Types of Axial Flwr PM Machines
- 1.5 Topologies and Geometries
- 1.6 Rotor Dynamics
- 1.7 Axial Magnetic Field Excited by PMs
- 1.8 PM Eddy-Current Brake as the Simplest AFPM Brushless Machine
- 1.9 AFPM Machines versus RFPM Machines
- 1.10 Power Limitation of AFPM Machines
- Numerical Examples
- 2 Principles of AFPM Machines
- 2.1 Magnetic Circuits
- 2.1.1 Single-Sided Machines
- 2.1.2 Double-Sided Machines With Internal PM DiscRotor
- 2.1.3 Double-Sided Machines With Internal Ring-Shaped Core Stator
- 2.1.4 Double-Sided Machines With Internal Slotted Stator
- 2.1.5 Double-Sided Machines With Internal Coreless Stator
- 2.1.6 Multidisc Machines
- 2.2 Windings
- 2.2.1 Three-Phase Windings Distributed in Slots
- 2.2.2 Toroidal Winding
- 2.2.3 Coreless Stator Winding
- 2.2.4 Non-Overlap (Salient Pole) Windings
- 2.3 Torque Production
- 2.4 Magnetic Flux
- 2.5 Electromagnetic Torque and EMF
- 2.6 Losses and Efficiency
- 2.6.1 Stator Winding Losses
- 2.6.2 Stator Core Losses
- 2.6.3 Core Loss Finite Element Model
- 2.6.4 Losses in Permanent Magnets
- 2.6.5 Rotor Core Losses
- 2.6.6 Eddy Current Losses in Stator Conductors
- 2.6.7 Rotational Losses
- 2.6.8 Losses for Nonsinusoidal Current
- 2.6.9 Efficiency
- 2.7 Phasor Diagrams
- 2.8 Sizing Equations
- 2.9 Armature Reaction
- 2.10 AFPM Motor
- 2.10.1 Sine-Wave Motor
- 2.10.2 Square-Wave Motor
- 2.11 AFPM Synchronous Generator
- 2.11.1 Performance Characteristics of a Stand Alone Generator
- 2.11.2 Synchronization With Utility Grid
- Numerical Examples
- 3 Materials and Fabrication
- 3.1 Stator Cores
- 3.1.1 Nonoriented Electrical Steels
- 3.1.2 Amorphous Ferromagnetic Alloys
- 3.1.3 Soft Magnetic Powder Composites
- 3.1.4 Fabrication of Stator Cores
- 3.2 Rotor Magnetic Circuits
- 3.2.1 PM Materials
- 3.2.2 Characteristics of PM Materials
- 3.2.3 Operating Diagram
- 3.2.4 Permeances for Main and Leakage Fluxes
- 3.2.5 Calculation of Magnetic Circuits With PMs
- 3.2.6 Fabrication of Rotor Magnetic Circuits
- 3.3 Windings
- 3.3.1 Conductors
- 3.3.2 Fabrication of Slotted Windings
- 3.3.3 Fabrication of Coreless Windings
- Numerical Examples
- 4 AFPM Machines With Iron Cores
- 4.1 Geometries
- 4.2 Commercial AFPM Machines With Stator Ferromagnetic Cores
- 4.3 Some Features of Iron-Cored AFPM Machines
- 4.4 Magnetic Flux Density Distribution in the Air Gap
- 4.5 Calculation of Reactances
- 4.5.1 Synchronous and Armature Reaction Reactances
- 4.5.2 Stator Leakage Reactance
- 4.6 Performance Characteristics
- 4.7 Performance Calculation
- 4.7.1 Sine-Wave AFPM Machine
- 4.7.2 Synchronous Generator
- 4.7.3 Square-Wave AFPM Machine
- 4.8 Finite Element Calculations
- Numerical Examples
- 5 AFPM Machines Without Stator Cores
- 5.1 Advantages and Disadvantages
- 5.2 Commercial Coreless Stator AFPM Machines
- 5.3 Coreless Stator AFPM Microgenerators
- 5.4 Performance Calculation
- 5.4.1 Steady-State Performance
- 5.4.2 Dynamic Performance
- 5.5 Calculation of Coreless Winding Inductances
- 5.5.1 Classical Approach
- 5.5.2 FEM Approach
- 5.6 Performance Characteristics
- 5.7 Performance of Coreless Non-Overlap Winding AFPM Machines
- 5.8 Eddy Current Losses in the Stator Windings
- 5.8.1 Eddy Current Loss Resistance
- 5.8.2 Reduction of Eddy Current Losses
- 5.8.3 Reduction of Circulating Current Losses
- 5.8.4 Measurement of Eddy Current Losses
- 5.9 Armature Reaction
- 5.10 Mechanical Design Features
- 5.10.1 Mechanical Strength Analysis
- 5.10.2 Imbalanced Axial Force on the Stator
- 5.11 Thermal Problems
- Numerical Examples
- 6 AFPM Machines Without Stator and Rotor Cores
- 6.1 Advantages and Disadvantages
- 6.2 Topology and Construction
- 6.3 Air Gap Magnetic Flux Density
- 6.4 Electromagnetic Torque and EMF
- 6.5 Commercial Coreless AFPM Motors
- 6.6 Case Study: Low-Speed AFPM Coreless Brushless Motor
- 6.6.1 Performance Characteristics
- 6.6.2 Cost Analysis
- 6.6.3 Comparison With Cylindrical Motor With Laminated Stator and Rotor Cores
- 6.7 Case Study: Low-Speed Coreless AFPM
- Brushless Generator
- 6.8 Characterist
「Nielsen BookData」 より