Improving infrared-based precipitation retrieval algorithms using multi-spectral satellite imagery

著者

    • Nastollahi, Nasrin

書誌事項

Improving infrared-based precipitation retrieval algorithms using multi-spectral satellite imagery

Nasrin Nastollahi

(Springer theses : recognizing outstanding Ph. D. research)

Springer, c2015

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

内容説明・目次

内容説明

This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space. Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved. The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.

目次

Introduction to the Current States of Satellite Precipitation Products.- False Alarm in Satellite Precipitation Data.- Satellite Observations.- Reducing False Rain in Satellite Precipitation Products Using CloudSat Cloud Classification Maps and MODIS Multi-Spectral Images.- Integration of CloudSat Precipitation Profile in Reduction of False Rain.- Cloud Classification and its Application in Reducing False Rain.- Summary and Conclusions.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB17480047
  • ISBN
    • 9783319120805
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Heidelberg
  • ページ数/冊数
    xxi, 68 p.
  • 大きさ
    25 cm
  • 親書誌ID
ページトップへ