Ferroelectric domain walls : statics, dynamics, and functionalities revealed by atomic force microscopy

著者

    • Guyonnet, Jill

書誌事項

Ferroelectric domain walls : statics, dynamics, and functionalities revealed by atomic force microscopy

Jill Guyonnet

(Springer theses : recognizing outstanding Ph. D. research)

Springer, c2014

  • : hardback

大学図書館所蔵 件 / 2

この図書・雑誌をさがす

注記

"Doctoral thesis accepted by the University of Geneva, Switzerland"--T.p.

Includes bibliographical references

内容説明・目次

内容説明

Using the nano metric resolution of atomic force microscopy techniques, this work explores the rich fundamental physics and novel functionalities of domain walls in ferroelectric materials, the nano scale interfaces separating regions of differently oriented spontaneous polarization. Due to the local symmetry-breaking caused by the change in polarization, domain walls are found to possess an unexpected lateral piezoelectric response, even when this is symmetry-forbidden in the parent material. This has interesting potential applications in electromechanical devices based on ferroelectric domain patterning. Moreover, electrical conduction is shown to arise at domain walls in otherwise insulating lead zirconate titanate, the first such observation outside of multiferroic bismuth ferrite, due to the tendency of the walls to localize defects. The role of defects is then explored in the theoretical framework of disordered elastic interfaces possessing a characteristic roughness scaling and complex dynamic response. It is shown that the heterogeneous disorder landscape in ferroelectric thin films leads to a breakdown of the usual self-affine roughness, possibly related to strong pinning at individual defects. Finally, the roles of varying environmental conditions and defect densities in domain switching are explored and shown to be adequately modelled as a competition between screening effects and pinning.

目次

Introduction.- Domain Walls in Ferroelectric Materials.- Experimental Setup.- Lateral Piezoelectric Response Across Ferroelectric Domain Walls.- Electrical Conduction at 180 Degrees Ferroelectric Domain Walls.- A Statistical Approach to Domain Wall Roughening and Dynamics: Disordered Elastic Systems.- Measuring the Roughness Exponent of One-Dimensional Interfaces.- Roughness Analysis of 180 Degrees Ferroelectric Domain Walls.- Disorder and Environmental Effects on Nanodomain Growth.- Conclusions.- Appendix A Displacement Autocorrelation Function Scaling for Super-Rough Interfaces.- Appendix B AFM for the Eye.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ