Global attractors of non-autonomous dynamical and control systems

Bibliographic Information

Global attractors of non-autonomous dynamical and control systems

David N Cheban

(Interdisciplinary mathematical sciences, v. 18)

World Scientific, c2015

2nd ed

Search this Book/Journal
Note

Includes bibliographical references (p. 559-583) and index

Description and Table of Contents

Description

The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor. From an in-depth introduction to the different types of dissipativity and attraction, the book takes a comprehensive look at the connections between them, and critically discusses applications of general results to different classes of differential equations.The new Chapters 15-17 added to this edition include some results concerning Control Dynamical Systems - the global attractors, asymptotic stability of switched systems, absolute asymptotic stability of differential/difference equations and inclusions - published in the works of author in recent years.

Table of Contents

  • Global Attractors of Autonomous and Non-Autonomous Dynamical Systems
  • The Structure of Levinson Center of Dynamical System
  • Holomorphic Dynamical Systems and Their Attractors
  • Method of Lyapunov Functions
  • Upper Semicontinuity of Attractors
  • The Relationship Between Pullback, Forward and Global Attractors
  • Pullback Attractors Under Discretization
  • Global Attractors of Some Classes of Evolution Equations (Lorenz Systems, Navier-Stokes Equations, V-Monotone Systems, Difference Equations etc.)
  • Linear Almost Periodic Systems
  • Global Attractors and Asymptotic Stability of Control Systems

by "Nielsen BookData"

Related Books: 1-1 of 1
Details
Page Top