Advanced methods in the fractional calculus of variations
著者
書誌事項
Advanced methods in the fractional calculus of variations
(Springer briefs in applied sciences and technology)
Springer, c2015
- : pbk
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
This brief presents a general unifying perspective on the fractional calculus. It brings together results of several recent approaches in generalizing the least action principle and the Euler-Lagrange equations to include fractional derivatives.
The dependence of Lagrangians on generalized fractional operators as well as on classical derivatives is considered along with still more general problems in which integer-order integrals are replaced by fractional integrals. General theorems are obtained for several types of variational problems for which recent results developed in the literature can be obtained as special cases. In particular, the authors offer necessary optimality conditions of Euler-Lagrange type for the fundamental and isoperimetric problems, transversality conditions, and Noether symmetry theorems. The existence of solutions is demonstrated under Tonelli type conditions. The results are used to prove the existence of eigenvalues and corresponding orthogonal eigenfunctions of fractional Sturm-Liouville problems.
Advanced Methods in the Fractional Calculus of Variations is a self-contained text which will be useful for graduate students wishing to learn about fractional-order systems. The detailed explanations will interest researchers with backgrounds in applied mathematics, control and optimization as well as in certain areas of physics and engineering.
目次
1. Introduction.- 2. Fractional Calculus.- 2.1. One-dimensional Fractional Calculus.- 2.2. Multidimensional Fractional Calculus.- 3. Fractional Calculus of Variations.- 3.1. Fractional Euler-Lagrange Equations.- 3.2. Fractional Embedding of Euler-Lagrange Equations.- 4. Standard Methods in Fractional Variational Calculus.- 4.1. Properties of Generalized Fractional Integrals.- 4.2. Fundamental Problem.- 4.3. Free Initial Boundary.- 4.4. Isoperimetric Problem.- 4.5. Noether's Theorem.- 4.6. Variational Calculus in Terms of a Generalized Integral.- 4.7. Generalized Variational Calculus of Several Variables.- 4.8. Conclusion.- 5. Direct Methods in Fractional Calculus of Variations.- 5.1. Existence of a Minimizer for a Generalized Functional.- 5.2. Necessary Optimality Condition for a Minimizer.- 5.3. Some Improvements.- 5.4. Conclusion.- 6. Application to the Sturm-Liouville Problem.- 6.1. Useful Lemmas.- 6.2. The Fractional Sturm-Liouville Problem.- 7. Conclusion.- Appendix - Two Convergence Lemmas.- Index.
「Nielsen BookData」 より