Higher-order components for grid programming : making grids more usable
Author(s)
Bibliographic Information
Higher-order components for grid programming : making grids more usable
Springer, c2009
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 171-180) and index
Description and Table of Contents
Description
A major challenge in grid computing remains the application software development for this new kind of infrastructure. Grid application programmers have to take into account several complicated aspects: distribution of data and computations, parallel computations on different sites and processors, heterogeneity of the involved computers, load balancing, etc. Grid programmers thus demand novel programming methodologies that abstract over such technical details while preserving the beneficial features of modern grid middleware.
For this purpose, the authors introduce Higher-Order Components (HOCs). HOCs implement generic parallel/distributed processing patterns, together with the required middleware support, and they are offered to users via a high-level service interface. Users only have to provide the application-specific pieces of their programs as parameters, while low-level implementation details, such as the transfer of data across the grid, are handled by the HOCs. HOCs were developed within the CoreGRID European Network of Excellence and have become an optional extension of the popular Globus middleware. The book provides the reader with hands-on experience, describing a broad collection of example applications from various fields of science and engineering, including biology, physics, etc. The Java code for these examples is provided online, complementing the book. The expected application performance is studied and reported for extensive performance experiments on different testbeds, including grids with worldwide distribution.
The book is targeted at graduate students, advanced professionals, and researchers in both academia and industry. Readers can raise their level of knowledge about methodologies for programming contemporary parallel and distributed systems, and, furthermore, they can gain practical experience in using distributed software. Practical examples show how the complementary online material can easily be adopted in various new projects.
Table of Contents
HOCs: Software Components for Grid Programming.- Higher-Order Component Service Architecture (HOC-SA).- Applications of Higher-Order Components.- HOCs With Embedded Scheduling and Loop Parallelization.- Conclusions and Related Work.
by "Nielsen BookData"