A student's guide to waves
Author(s)
Bibliographic Information
A student's guide to waves
Cambridge University Press, 2015
- : pbk
- : Hardback
Available at 9 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Hokkaido University, Library, Graduate School of Science, Faculty of Science and School of Science図書
: Hardback530.124/F6282080377793
Note
Includes bibliographical references (p. 214) and index
Description and Table of Contents
Description
Waves are an important topic in the fields of mechanics, electromagnetism, and quantum theory, but many students struggle with the mathematical aspects. Written to complement course textbooks, this book focuses on the topics that students find most difficult. Retaining the highly popular approach used in Fleisch's other Student's Guides, the book uses plain language to explain fundamental ideas in a simple and clear way. Exercises and fully-worked examples help readers test their understanding of the concepts, making this an ideal book for undergraduates in physics and engineering trying to get to grips with this challenging subject. The book is supported by a suite of online resources available at www.cambridge.org/9781107643260. These include interactive solutions for every exercise and problem in the text and a series of video podcasts in which the authors explain the important concepts of every section of the book.
Table of Contents
- Introduction
- 1. Wave fundamentals
- 2. The wave equation
- 3. Wave components
- 4. The mechanical wave equation
- 5. The electromagnetic wave equation
- 6. The quantum wave equation
- References
- Index.
by "Nielsen BookData"