Molecular biological technologies for ocean sensing
著者
書誌事項
Molecular biological technologies for ocean sensing
Humana Press : Springer, 2012
大学図書館所蔵 件 / 全1件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
収録内容
- "Omics"-enabled microbial sensors on ocean platforms
- Julie C. Robidart, Irina N. Shilova, and Jonathan P. Zehr
- Development of a capillary waveguide biosensor analytical module for use with the MBARI environmental sample processor
- Harbans S. Dhadwal ... [et al.]
- Microfabricated flow-through device for in situ gene analysis
- Tatsuhiro Fukuba and Teruo Fujii
- Method for the quantification of aquatic primary production and net ecosystem metabolism using in situ dissolved oxygen sensors
- Joseph A. Needoba, Tawnya D. Peterson, and Kenneth S. Johnson
- DNAzyme-based sensing for metal ions in ocean platform
- Jung Heon Lee, Zidong Wang, and Yi Lu
- Ultrasensitive visual fluorescence detection of heavy metal ions in water based on DNA-functionalized hydrogels
- Juewen Liu, Neeshma Dave, and Po-Jung Jimmy Huang
- Use of peptide nucleic acids in surface plasmon resonance for detection of red tide algae
- Amber R. Bratcher and Laurie B. Connell
- Immobilization of fluorescent aptamer biosensors on magnetic microparticles and its potential application for ocean sensing
- Po-Jung Jimmy Huang, Imran Khimji, and Juewen Liu
- Functional gene arrays for analysis of microbial communities on ocean platform
- Katelyn M. McKindles and Sonia M. Tiquia-Arashiro
- Bioluminescence detection for ATP quantification using microfluidic device
- Tatsuhiro Fukuba and Teruo Fujii
- Use of biosensors as alternatives to current regulatory methods for marine biotoxins
- Luis M. Botana ... [et al.]
- Electrochemical detection of harmful algae by means of a sandwich hybridization assay on an electrode surface
- Jahir Orozco and Linda K. Medlin
- Waterborne pathogen detection using a magnetoresistive immuno-chip
- Sofia S.A. Martins ... [et al.]
内容説明・目次
内容説明
The development of ocean sensors remains a ripe area for future investigation from science, policy and systemsengineering standpoints. Clearly, there are many options forrealizing integrated molecular analytical sensing systems. The definition of key target molecules, detection methodsand signal transduction models largely remain to be determined.Moreover, there remains ahuge challenge of merging this new class of instrument with different deployment platforms, and supplying necessarypower and data telemetry infrastructure for their operation. Molecular Biological Technologies for Ocean Sensing features methods papers on the application of ecogenomic sensors on autonomous platforms in the ocean. Topics include the use of ecogenomic sensors as a tool in whole-cell and cell-free based detection and monitoring a suite of pathogens and biotoxins that are of public health concern; documenting species diversity, evolution and metabolic function; identification and quantification of aquatic organisms; and inferring metabolic potential and activities of microorganisms in the ocean. Each contribution focuses on the (1) functional requirements for detecting specific microorganisms and the genes that they harbor and express;(2) examples of research activities that take advantage of molecular detection technologies;(3) some of the challenges faced when projecting development and use of novel instruments that will utilize molecular techniques onboard autonomous platforms;and future directions. Bringing these advancements on autonomous platforms, monitoring required sample collection and processing schemes will differ from those currently used (i.e. biomedical diagnostics). This book is the first of its kind to compile current technologies for studying organisms in situ. It will aid in transfer technology to oceanographers, ecologists, microbiologists, and environmental scientists with needs for a remote, in-water sensing capability and for integration with larger scale observatory operations. With this network in place, there is a potential to bridge the gap among regulatory agencies and academics about how this kind of technology can be used for research and monitoring purposes.
目次
Chapter 1. Genome-enabled microbial sensors on ocean platforms.- Chapter 2. Development of a Capillary Waveguide Biosensor Analytical Module for use with the MBARI Environmental Sample Processor.- Chapter 3. MicrofabricatedFlow-Through Device For In Situ Gene Analysis.- Chapter 4. Method for the Quantification of Aquatic Primary Production and Net Ecosystem Metabolism Using In Situ Dissolved Oxygen Sensors.- Chapter 5. DNAzyme-Based Sensing for Metal Ions in Ocean Platform.- Chapter 6. Ultrasensitive Visual Fluorescence Detection of Heavy Metal Ions in Water Based on DNA-Functionalized Hydrogels.- Chapter 7. The Use of Peptide Nucleic Acids in Surface Plasmon Resonance for Detection of Red Tide Algae.- Chapter 8. Immobilization of Fluorescent Aptamer Biosensors on Magnetic Microparticles and Its Potential Application for Ocean Sensing.- Chapter 9. Functional Gene Arrays for Analysis of Microbial Communities on Ocean Platform.- Chapter 10. Bioluminescence detection for ATP quantification using microfluidic device.- Chapter 11. Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins.- Chapter 12. Electrochemical Detection of Harmful Algae by Means of a Sandwich Hybridization Assay on an Electrode Surface.- Chapter 13. Waterborne Pathogen Detection Using a MagnetoresistiveImmuno-Chip
「Nielsen BookData」 より