Probability and statistics for engineering and the sciences
著者
書誌事項
Probability and statistics for engineering and the sciences
Cengage Learning, c2016
9th ed
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Put statistical theories into practice with PROBABILITY AND STATISTICS FOR ENGINEERING AND THE SCIENCES, 9th Edition. Always a market favorite, this calculus-based book offers a comprehensive introduction to probability and statistics while demonstrating how to apply concepts, models, and methodologies in today's engineering and scientific workplaces. Jay Devore, an award-winning professor and internationally recognized author and statistician, stresses lively examples and engineering activities to drive home the numbers without exhaustive mathematical development and derivations. Many examples, practice problems, sample tests, and simulations based on real data and issues help you build a more intuitive connection to the material. A proven and accurate book, PROBABILITY AND STATISTICS FOR ENGINEERING AND THE SCIENCES, 9th Edition also includes graphics and screen shots from SAS(R), MINITAB(R), and Java(TM) Applets to give you a solid perspective of statistics in action.
目次
1. OVERVIEW AND DESCRIPTIVE STATISTICS. Populations, Samples, and Processes. Pictorial and Tabular Methods in Descriptive Statistics. Measures of Location. Measures of Variability. 2. PROBABILITY. Sample Spaces and Events. Axioms, Interpretations, and Properties of Probability. Counting Techniques. Conditional Probability. Independence. 3. DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Random Variables. Probability Distributions for Discrete Random Variables. Expected Values. The Binomial Probability Distribution. Hypergeometric and Negative Binomial Distributions. The Poisson Probability Distribution. 4. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Probability Density Functions. Cumulative Distribution Functions and Expected Values. The Normal Distribution. The Exponential and Gamma Distributions. Other Continuous Distributions. Probability Plots. 5. JOINT PROBABILITY DISTRIBUTIONS AND RANDOM SAMPLES. Jointly Distributed Random Variables. Expected Values, Covariance, and Correlation. Statistics and Their Distributions. The Distribution of the Sample Mean. The Distribution of a Linear Combination. 6. POINT ESTIMATION. Some General Concepts of Point Estimation. Methods of Point Estimation. 7. STATISTICAL INTERVALS BASED ON A SINGLE SAMPLE. Basic Properties of Confidence Intervals. Large-Sample Confidence Intervals for a Population Mean and Proportion. Intervals Based on a Normal Population Distribution. Confidence Intervals for the Variance and Standard Deviation of a Normal Population. 8. TESTS OF HYPOTHESIS BASED ON A SINGLE SAMPLE. Hypotheses and Test Procedures. z Tests for Hypotheses About a Population Mean. The One-Sample t Test. Tests Concerning a Population Proportion. Further Aspects of Hypothesis Testing. 9. INFERENCES BASED ON TWO SAMPLES. z Tests and Confidence Intervals for a Difference between Two Population Means. The Two-Sample t Test and Confidence Interval. Analysis of Paired Data. Inferences Concerning a Difference between Population Proportions. Inferences Concerning Two Population Variances. 10. THE ANALYSIS OF VARIANCE. Single-Factor ANOVA. Multiple Comparisons in ANOVA. More on Single-Factor ANOVA. 11. MULTIFACTOR ANALYSIS OF VARIANCE. Two-Factor ANOVA with Kij = 1. Two-Factor ANOVA with Kij > 1. Three-Factor ANOVA 11. 4 2p Factorial Experiments. 12. SIMPLE LINEAR REGRESSION AND CORRELATION. The Simple Linear Regression Model. Estimating Model Parameters. Inferences About the Slope Parameter ss1. Inferences Concerning Y*x* and the Prediction of Future Y Values. Correlation. 13. NONLINEAR AND MULTIPLE REGRESSION. Assessing Model Adequacy. Regression with Transformed Variables. Polynomial Regression. Multiple Regression Analysis. Other Issues in Multiple Regression. 14. GOODNESS-OF-FIT TESTS AND CATEGORICAL DATA ANALYSIS. Goodness-of-Fit Tests When Category Probabilities Are Completely Specified. Goodness-of-Fit Tests for Composite Hypotheses. Two-Way Contingency Tables 15. DISTRIBUTION-FREE PROCEDURES. The Wilcoxon Signed-Rank Test. The Wilcoxon Rank-Sum Test. Distribution-Free Confidence Intervals. Distribution-Free ANOVA. 16. QUALITY CONTROL METHODS. General Comments on Control Charts. Control Charts for Process Location. Control Charts for Process Variation. Control Charts for Attributes. CUSUM Procedures. Acceptance Sampling.
「Nielsen BookData」 より