New approaches to nonlinear waves
著者
書誌事項
New approaches to nonlinear waves
(Lecture notes in physics, v. 908)
Springer, c2016
大学図書館所蔵 全10件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book.
Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3).
In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5).
The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system.
The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments.
All the chapters are illustrated by ample constructive examples demonstrating the applicability of these novel methods and approaches to a wide class of evolutionary dispersive PDEs, e.g. equations from Benjamin-Oro, Boussinesq, Hasegawa-Mima, KdV-type, Klein-Gordon, NLS-type, Serre, Shamel , Whitham and Zakharov.
This makes the book interesting for professionals in the fields of nonlinear physics, applied mathematics and fluid mechanics as well as students who are studying these subjects. The book can also be used as a basis for a one-semester lecture course in applied mathematics or mathematical physics.
目次
Introduction (E. Tobisch).- Brief historical overview.- Main notions.- Resonant interactions.- Modulation instability.- Frameworks.- Reality check.- References.- The effective equation method (Sergei Kuksin and Alberto Maiocchi).- Introduction.- How to construct the effective equation.- Structure of resonances.- CHM: resonance clustering.- Concluding remarks.- References.- On the discovery of the steady-state resonant water waves (Shijun Liao, Dali Xu and Zeng Liu).- Introduction.- Basic ideas of homotopy analysis method.- Steady-state resonant waves in constant-depth water.- Experimental observation.- Concluding remarks.- References.- Modulational instability in equations of KdV type (Jared C. Bronski, Vera Mikyoung Hur and Mathew A. Johnson).- Introduction.- Periodic traveling waves of generalized KdV equations.- Formal asymptotics and Whitham's modulation theory.- Rigorous theory of modulational instability.- Applications.- Concluding remarks.- References.- Modulational instability and rogue waves in shallow water models (R. Grimshaw, K. W. Chow and H. N. Chan).- Introduction.- Korteweg-de Vries equations.- Boussinesq model.- Hirota-Satsuma model.- Discussion.- References.- Hamiltonian framework for short optical pulses (Shalva Amiranashvili).- Introduction.- Poisson brackets.- Pulses in optical fibers.- Hamiltonian description of pulses.- Concluding remarks.- References.- Modeling water waves beyond perturbations (Didier Clamond and Denys Dutykh).- Introduction.- Preliminaries.- Variational formulations.- Examples.- Discussion.- References.- Quantitative Analysis of Nonlinear Water-Waves: a Perspective of an Experimentalist (Lev Shemer).- Introduction.- The experimental facilities.- The Nonlinear Schroedinger Equation.- The Modified Nonlinear Schroedinger (Dysthe) Equation.- The Spatial Zakharov Equation.- Statistics of nonlinear unidirectional water waves.- Discussion and Conclusions.- References.
「Nielsen BookData」 より