Learning with submodular functions : a convex optimization perspective
著者
書誌事項
Learning with submodular functions : a convex optimization perspective
(Foundations and trends in machine learning, v. 6,
now Publishers, c2013
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions, and (2) the Lovasz extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning.
In Learning with Submodular Functions, the theory of submodular functions is presented in a self-contained way from a convex analysis perspective, presenting tight links between certain polyhedra, combinatorial optimization and convex optimization problems. In particular, it describes how submodular function minimization is equivalent to solving a wide variety of convex optimization problems. This allows the derivation of new efficient algorithms for approximate and exact submodular function minimization with theoretical guarantees and good practical performance.
By listing many examples of submodular functions, it reviews various applications to machine learning, such as clustering, experimental design, sensor placement, graphical model structure learning or subset selection, as well as a family of structured sparsity-inducing norms that can be derived and used from submodular functions.
This is an ideal reference for researchers, scientists, or engineers with an interest in applying submodular functions to machine learning problems.
目次
1: Introduction 2: Definitions 3: Lovasz Extension 4: Properties of Associated Polyhedra 5: Convex Relaxation of Submodular Penalties 6: Examples and Applications of Submodularity 7: Non-smooth Convex Optimization 8: Separable Optimization Problems: Analysis 9: Separable Optimization Problems: Algorithms 10: Submodular Function Minimization 11: Other Submodular Optimization Problems 12: Experiments 13: Conclusion. Appendices. Acknowledgements. References
「Nielsen BookData」 より