Ordinary differential equations : from calculus to dynamical systems
著者
書誌事項
Ordinary differential equations : from calculus to dynamical systems
(MAA textbooks)
The Mathematical Association of America, c2014
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
内容説明・目次
内容説明
Techniques for studying ordinary differential equations (ODEs) have become part of the required toolkit for students in the applied sciences. This book presents a modern treatment of the material found in a first undergraduate course in ODEs. Standard analytical methods for first- and second-order equations are covered first, followed by numerical and graphical methods, and bifurcation theory. Higher dimensional theory follows next via a study of linear systems of first-order equations, including background material in matrix algebra. A phase plane analysis of two-dimensional nonlinear systems is a highlight, while an introduction to dynamical systems and an extension of bifurcation theory to cover systems of equations will be of particular interest to biologists. With an emphasis on real-world problems, this book is an ideal basis for an undergraduate course in engineering and applied sciences such as biology, or as a refresher for beginning graduate students in these areas.
目次
- Preface
- Sample course outline
- 1. Introduction to differential equations
- 2. First-order differential equations
- 3. Second-order differential equations
- 4. Linear systems of first-order differential equations
- 5. Geometry of autonomous systems
- 6. Laplace transforms
- Appendix A. Answers to odd-numbered exercises
- Appendix B. Derivative and integral formulas
- Appendix C. Cofactor method for determinants
- Appendix D. Cramer's rule for solving systems of linear equations
- Appendix E. The Wronskian
- Appendix F. Table of Laplace transforms
- Index
- About the author.
「Nielsen BookData」 より