Micro Energy Harvesting

著者

    • Briand, Danick
    • Yeatman, Eric
    • Roundy, Shad

書誌事項

Micro Energy Harvesting

edited by Danick Briand, Eric Yeatman, and Shad Roundy

(Advanced micro & nanosystems)

Wiley-VCH, c2015

大学図書館所蔵 件 / 5

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.

目次

About the Volume Editors XVII List of Contributors XIX 1 Introduction to Micro Energy Harvesting 1 Danick Briand, Eric Yeatman, and Shad Roundy 1.1 Introduction to the Topic 1 1.2 Current Status and Trends 3 1.3 Book Content and Structure 4 2 Fundamentals of Mechanics and Dynamics 7 Helios Vocca and Luca Gammaitoni 2.1 Introduction 7 2.2 Strategies for Micro Vibration Energy Harvesting 8 2.2.1 Piezoelectric 9 2.2.2 Electromagnetic 10 2.2.3 Electrostatic 11 2.2.4 From Macro to Micro to Nano 11 2.3 Dynamical Models for Vibration Energy Harvesters 12 2.3.1 Stochastic Character of Ambient Vibrations 14 2.3.2 Linear Case 1: Piezoelectric Cantilever Generator 14 2.3.3 Linear Case 2: Electromagnetic Generator 15 2.3.4 Transfer Function 15 2.4 Beyond Linear Micro-Vibration Harvesting 16 2.4.1 Frequency Tuning 16 2.4.2 Multimodal Harvesting 17 2.4.3 Up-Conversion Techniques 17 2.5 Nonlinear Micro-Vibration Energy Harvesting 18 2.5.1 Bistable Oscillators: Cantilever 19 2.5.2 Bistable Oscillators: Buckled Beam 21 2.5.3 Monostable Oscillators 23 2.6 Conclusions 24 Acknowledgments 24 References 24 3 Electromechanical Transducers 27 Adrien Badel, Fabien Formosa, andMickael Lallart 3.1 Introduction 27 3.2 Electromagnetic Transducers 27 3.2.1 Basic Principle 27 3.2.1.1 Induced Voltage 28 3.2.1.2 Self-Induction 28 3.2.1.3 Mechanical Aspect 29 3.2.2 Typical Architectures 30 3.2.2.1 Case Study 30 3.2.2.2 General Case 33 3.2.3 Energy Extraction Cycle 33 3.2.3.1 Resistive Cycle 34 3.2.3.2 Self-Inductance Cancelation 34 3.2.3.3 Cycle with Rectification 35 3.2.3.4 Active Cycle 36 3.2.4 Figures of Merit and Limitations 36 3.3 Piezoelectric Transducers 37 3.3.1 Basic Principles and Constitutive Equations 37 3.3.1.1 Physical Origin of Piezoelectricity in Ceramics and Crystals 37 3.3.1.2 Constitutive Equations 38 3.3.2 Typical Architectures for Energy Harvesting 39 3.3.2.1 Modeling 39 3.3.2.2 Application to Typical Configurations 40 3.3.3 Energy Extraction Cycles 41 3.3.3.1 Resistive Cycles 41 3.3.3.2 Cycles with Rectification 43 3.3.3.3 Active Cycles 43 3.3.3.4 Comparison 43 3.3.4 Maximal Power Density and Figure of Merit 44 3.4 Electrostatic Transducers 45 3.4.1 Basic Principles 45 3.4.1.1 Gauss's Law 45 3.4.1.2 Capacitance C0 45 3.4.1.3 Electric Potential 46 3.4.1.4 Energy 46 3.4.1.5 Force 47 3.4.2 Design Parameters for a Capacitor 47 3.4.2.1 Architecture 47 3.4.2.2 Dielectric 48 3.4.3 Energy Extraction Cycles 48 3.4.3.1 Charge-Constrained Cycle 49 3.4.3.2 Voltage-Constrained Cycle 50 3.4.3.3 Electret Cycle 51 3.4.4 Limits 51 3.4.4.1 Parasitic Capacitors 51 3.4.4.2 Breakdown Voltage 53 3.4.4.3 Pull-In Force 53 3.5 Other Electromechanical Transduction Principles 53 3.5.1 Electrostrictive Materials 53 3.5.1.1 Physical Origin and Constitutive Equations 53 3.5.1.2 Energy Harvesting Strategies 54 3.5.2 Magnetostrictive Materials 55 3.5.2.1 Physical Origin 55 3.5.2.2 Constitutive Equations 56 3.6 Effect of the Vibration Energy Harvester Mechanical Structure 56 3.7 Summary 58 References 59 4 Thermal Fundamentals 61 Mathieu Francoeur 4.1 Introduction 61 4.2 Fundamentals of Thermoelectric Power Generation 62 4.2.1 Overview of Nanoscale Heat Conduction and the Seebeck Effect 62 4.2.2 Heat Transfer Analysis ofThermoelectric Power Generation 64 4.3 Near-FieldThermal Radiation andThermophotovoltaic Power Generation 66 4.3.1 Introduction 66 4.3.2 Theoretical Framework: Fluctuational Electrodynamics 67 4.3.3 Introduction toThermophotovoltaic Power Generation and Physics of Near-Field Radiative Heat Transfer between Two Bulk Materials Separated by a Subwavelength Vacuum Gap 70 4.3.4 Nanoscale-Gap Thermophotovoltaic Power Generation 76 4.4 Conclusions 80 Acknowledgments 80 References 81 5 Power Conditioning for Energy Harvesting - Theory and Architecture 85 Stephen G. Burrow and Paul D.Mitcheson 5.1 Introduction 85 5.2 The Function of Power Conditioning 85 5.2.1 Interface to the Harvester 86 5.2.2 Circuits with Resistive Input Impedance 87 5.2.3 Circuits with Reactive Input Impedance 89 5.2.4 Circuits with Nonlinear Input Impedance 90 5.2.5 Peak Rectifiers 90 5.2.6 Piezoelectric Pre-biasing 92 5.2.7 Control 94 5.2.7.1 Voltage Regulation 94 5.2.7.2 Peak Power Controllers 96 5.2.8 System Architectures 97 5.2.8.1 Start-Up 97 5.2.9 Highly Dynamic Load Power 98 5.3 Summary 100 References 100 6 ThermoelectricMaterials for Energy Harvesting 103 Andrew C.Miner 6.1 Introduction 103 6.2 Performance Considerations in Materials Selection: zT 103 6.2.1 Properties of Chalcogenides (Group 16) 106 6.2.2 Properties of Crystallogens (Group 14) 106 6.2.3 Properties of Pnictides (Group 15) 107 6.2.4 Properties of Skutterudites 108 6.3 Influence of Scale on Material Selection and Synthesis 110 6.3.1 Thermal Conductance Mismatch 111 6.3.2 Domination of Electrical Contact Resistances 112 6.3.3 Domination of Bypass Heat Flow 113 6.3.4 Challenges inThermoelectric Property Measurement 113 6.4 Low Dimensionality: Internal Micro/Nanostructure and Related Approaches 114 6.5 Thermal Expansion and Its Role in Materials Selection 115 6.6 Raw Material Cost Considerations 116 6.7 Material Synthesis with Particular Relevance to Micro Energy Harvesting 116 6.7.1 Electroplating, Electrophoresis, Dielectrophoresis 117 6.7.2 Thin andThick Film Deposition 118 6.8 Summary 118 References 119 7 Piezoelectric Materials for Energy Harvesting 123 Emmanuel Defay, Sebastien Boisseau, and Ghislain Despesse 7.1 Introduction 123 7.2 What Is Piezoelectricity? 123 7.3 Thermodynamics: the RightWay to Describe Piezoelectricity 125 7.4 Material Figure of Merit: the Electromechanical Coupling Factor 126 7.4.1 Special Considerations for Energy Harvesting 128 7.5 Perovskite Materials 129 7.5.1 Structure 129 7.5.1.1 Ferroelectricity in Perovskites 129 7.5.1.2 Piezoelectricity in Perovskites: Poling Required 131 7.5.2 PZT Phase Diagram 131 7.5.3 Ceramics 132 7.5.3.1 Fabrication Process 132 7.5.3.2 Typical Examples for Energy Harvesting 134 7.5.4 Bulk Single Crystals 135 7.5.4.1 Perovskites 135 7.5.4.2 Energy Harvesting with Perovskites Bulk Single Crystals 135 7.5.5 Polycrystalline PerovskitesThin Films 136 7.5.5.1 Fabrication Processes 136 7.5.5.2 Energy Harvesting with Poly-PZT Films 136 7.5.6 Single-Crystal Thin Films 137 7.5.6.1 Fabrication Process 137 7.5.6.2 Energy Harvesting with SC Perovskite Films 137 7.5.7 Lead-Free 138 7.5.7.1 Energy Harvesting with Lead-Free Materials 139 7.6 Wurtzites 139 7.6.1 Structure 139 7.6.2 Thin Films and Energy Harvesting 140 7.6.3 Doping 141 7.7 PVDFs 141 7.7.1 Structure 141 7.7.2 Synthesis 143 7.7.3 Energy Harvesters with PVDF 143 7.8 Nanomaterials 143 7.9 Typical Values for the Main Piezoelectric Materials 144 7.10 Summary 145 References 145 8 Electrostatic/Electret-Based Harvesters 149 Yuji Suzuki 8.1 Introduction 149 8.2 Electrostatic/Electret Conversion Cycle 149 8.3 Electrostatic/Electret Generator Models 151 8.3.1 Configuration of Electrostatic/Electret Generator 151 8.3.2 Electrode Design for Electrostatic/Electret Generator 153 8.4 Electrostatic Generators 156 8.4.1 Design and Fabrication Methods 156 8.4.2 Generator Examples 158 8.5 Electrets and Electret Generator Model 160 8.5.1 Electrets 160 8.5.2 Electret Materials 161 8.5.3 Charging Technologies 162 8.5.4 Electret Generator Model 163 8.6 Electret Generators 168 8.7 Summary 171 References 171 9 Electrodynamic Vibrational Energy Harvesting 175 Shuo Cheng, Clemens Cepnik, and David P. Arnold 9.1 Introduction 175 9.2 Theoretical Background 178 9.2.1 Energy Storage, Dissipation, and Conversion 178 9.2.2 Electrodynamic Physics 179 9.2.2.1 Faraday's Law 179 9.2.2.2 Lorentz Force 180 9.2.3 Simplified Electrodynamic Equations 180 9.3 Electrodynamic Harvester Architectures 181 9.4 Modeling and Optimization 183 9.4.1 Modeling 184 9.4.1.1 Lumped Element Method 184 9.4.1.2 Finite Element Method 188 9.4.1.3 Combination of Lumped Element Model and Finite Element Model 189 9.4.2 Optimization 190 9.5 Design and Fabrication 191 9.5.1 Design of Electrodynamic Harvesters 192 9.5.2 Fabrication of Electrodynamic Harvesters 194 9.6 Summary 196 References 197 10 Piezoelectric MEMS Energy Harvesters 201 Jae Yeong Park 10.1 Introduction 201 10.1.1 The General Governing Equation 202 10.1.2 Design Consideration 203 10.2 Development of Piezoelectric MEMS Energy Harvesters 204 10.2.1 Overview 204 10.2.2 Fabrication Technologies 205 10.2.3 Characterization 211 10.2.3.1 Frequency Response 211 10.2.3.2 Output Power of Piezoelectric MEMS Energy Harvesters 211 10.3 Challenging Issues in Piezoelectric MEMS Energy Harvesters 213 10.3.1 Output Power 213 10.3.2 Frequency Response 215 10.3.3 Piezoelectric Material 217 10.4 Summary 218 References 218 11 Vibration Energy Harvesting fromWideband and Time-Varying Frequencies 223 Lindsay M.Miller 11.1 Introduction 223 Contents XI 11.1.1 Motivation 223 11.1.2 Classification of Devices 223 11.1.3 General Comments 225 11.2 Active Schemes for Tunable Resonant Devices 225 11.2.1 Stiffness Modification for Frequency Tuning 226 11.2.1.1 Modify L 226 11.2.1.2 Modify E 227 11.2.1.3 Modify keff Using Axial Force 227 11.2.1.4 Modify keff Using an External Spring 229 11.2.1.5 Modify keff Using an Electrical External Spring 231 11.2.2 Mass Modification for Frequency Tuning 232 11.3 Passive Schemes for Tunable Resonant Devices 232 11.3.1 Modify meff by Coupling Mass Position with Beam Excitation 233 11.3.2 Modify keff by Coupling Axial Force with Centrifugal Force from Rotation 234 11.3.3 Modify L by Using Centrifugal Force to Toggle Beam Clamp Position 234 11.4 Wideband Devices 235 11.4.1 Multimodal Designs 236 11.4.2 Nonlinear Designs 237 11.5 Summary and Future Research Directions 240 11.5.1 Summary of Tunable andWideband Strategies 240 11.5.2 Areas for Future Improvement in Tunable andWideband Strategies 241 11.5.2.1 Tuning range and resolution 241 11.5.2.2 Tuning sensitivity to driving vibrations 242 11.5.2.3 System Size considerations 242 References 243 12 Micro Thermoelectric Generators 245 Ingo Stark 12.1 Introduction 245 12.2 Classification of Micro Thermoelectric Generators 247 12.3 General Considerations for MicroTEGs 250 12.4 Micro Device Technologies 252 12.4.1 Research and Development 253 12.4.1.1 Electrodeposition 253 12.4.1.2 Silicon-MEMS Technology 253 12.4.1.3 CMOS-MEMS Technology 254 12.4.1.4 Other 255 12.4.2 Commercialized Micro Technologies 257 12.4.2.1 Micropelt Technology 257 12.4.2.2 Nextreme/Laird Technology 258 12.4.2.3 Thermogen Technology 259 12.5 Applications of Complete Systems 260 12.5.1 Energy-Autonomous Sensor for Air Flow Temperature 261 12.5.2 Wireless Pulse Oximeter SpO2 Sensor 261 12.5.3 Intelligent Thermostatic Radiator Valve (iTRV) 262 12.5.4 Wireless Power Generator Evaluation Kit 263 12.5.5 Jacket-IntegratedWireless Temperature Sensor 263 12.6 Summary 264 References 265 13 Micromachined Acoustic Energy Harvesters 271 Stephen Horowitz and Mark Sheplak 13.1 Introduction 271 13.2 Historical Overview 272 13.2.1 A Brief History 272 13.2.2 Survey of Reported Performance 274 13.3 Acoustics Background 276 13.3.1 Principles and Concepts 276 13.3.2 Fundamentals of Acoustics 276 13.3.3 Challenges of Acoustic Energy Harvesting 277 13.4 Electroacoustic Transduction 277 13.4.1 Modeling 278 13.4.1.1 Lumped Element Modeling (LEM) 278 13.4.1.2 Equivalent Circuits 279 13.4.1.3 Transduction 280 13.4.1.4 Numerical Approaches 281 13.4.2 Impedance Matching and Energy Focusing 281 13.4.3 Transduction Methods 281 13.4.3.1 Piezoelectric Transduction 281 13.4.3.2 Electromagnetic Transduction 282 13.4.3.3 Electrostatic Transduction 282 13.4.3.4 Comparative Analysis 283 13.4.4 Transduction Structures 284 13.4.4.1 Structures for Impedance Matching 284 13.4.4.2 Structures for Acoustical to Mechanical Transduction 286 13.5 Fabrication Methods 288 13.5.1 Materials 288 13.5.2 Processes 289 13.6 Testing and Characterization 289 13.7 Summary 290 Acknowledgments 290 References 290 14 Energy Harvesting from Fluid Flows 297 Andrew S. Holmes 14.1 Introduction 297 14.2 Fundamental and Practical Limits 298 Contents XIII 14.3 MiniatureWind Turbines 301 14.3.1 Scaling Effects in MiniatureWind Turbines 302 14.3.1.1 Turbine Performance 302 14.3.1.2 Generator and Bearing Losses 305 14.4 Energy Harvesters Based on Flow Instability 306 14.4.1 Vortex Shedding Devices 307 14.4.2 Devices Based on Galloping and Flutter 310 14.5 Performance Comparison 316 14.6 Summary 317 References 317 15 Far-Field RF Energy Transfer and Harvesting 321 Hubregt J. Visser and Ruud Vullers 15.1 Introduction 321 15.2 Nonradiative and Radiative (Far-Field) RF Energy Transfer 322 15.2.1 Nonradiative Transfer 322 15.2.2 Radiative Transfer 323 15.2.3 Harvesting versus Transfer 324 15.3 Receiving Rectifying Antenna 326 15.3.1 Antenna-Rectifier Matching 326 15.3.1.1 Voltage Boosting Technique 327 15.3.1.2 Antenna Matched to Rectifier 328 15.3.1.3 Antenna Not Matched to the Rectifier/Multiplier 329 15.3.1.4 Consequences for the Rectifier and the Antenna Design 330 15.4 Rectifier 330 15.4.1 RF Input Impedance 331 15.4.2 DC Output Voltage 332 15.4.3 Antenna 334 15.4.3.1 50 Antenna 335 15.4.3.2 Complex Conjugately Matched Antenna 335 15.4.4 Rectenna Results 336 15.4.5 Voltage Up-Conversion 339 15.5 Transmission 340 15.6 Examples and Future Perspectives 341 15.7 Conclusions 344 References 344 16 Microfabricated Microbial Fuel Cells 347 Hao Ren and Junseok Chae 16.1 Introduction 347 16.2 Fundamentals of MEMS MFC 348 16.2.1 Operation Principle 348 16.2.1.1 Structure 348 16.2.1.2 Materials 350 16.2.2 Critical Parameters for Testing 350 16.2.2.1 Anode and Cathode Potential, the Total Cell Potential 350 16.2.2.2 Open Circuit Voltage (EOCV) 351 16.2.2.3 Areal/Volumetric Current Density and Areal/Volumetric Power Density 351 16.2.2.4 Internal Resistance and Areal Resistivity 352 16.2.2.5 Efficiency 353 16.3 Prior Art MEMS MFCS 354 16.4 FutureWork 355 16.4.1 Reducing Areal Resistivity 355 16.4.1.1 Applying Materials with High Surface-Area-to-Volume Ratio 355 16.4.1.2 Mitigating Oxygen Intrusion 358 16.4.2 Autonomous Running 359 16.4.3 Elucidating the EET Mechanism 359 References 359 17 Micro Photovoltaic Module Energy Harvesting 363 Shunpu Li ,WensiWang, NingningWang, Cian O'Mathuna, and Saibal Roy 17.1 Introduction 363 17.1.1 p-n Junction and Crystalline Si Solar Cells 363 17.1.2 Amorphous Silicon Solar Cell 366 17.1.3 CIGS and CdTe Solar Cell Development 367 17.1.4 Polymer Solar Cell 370 17.1.5 Dye-Sensitized Solar Cells (DSSC) 373 17.2 Monolithically Integration of Solar Cells with IC 375 17.3 Low-Power Micro Photovoltaic Systems 376 17.3.1 Maximum Power Point Tracking 376 17.3.2 Output Voltage Regulation 379 17.3.3 Indoor-Light-PoweredWireless Sensor Networks - a Case Study 380 17.4 Summary 382 References 383 18 Power Conditioning for Energy Harvesting - Case Studies and Commercial Products 385 Paul D.Mitcheson and Stephen G. Burrow 18.1 Introduction 385 18.2 Submilliwatt Electromagnetic Harvester Circuit Example 386 18.3 Single-Supply Pre-biasing for Piezoelectric Harvesters 388 18.4 Ultra-Low-Power Rectifier and MPPT for Thermoelectric Harvesters 392 18.5 Frequency Tuning of an Electromagnetic Harvester 393 18.6 Examples of Converters for Ultra-Low-Output Transducers 396 18.7 Power Processing for Electrostatic Devices 397 18.8 Commercial Products 397 18.9 Conclusions 398 References 399 19 Micro Energy Storage: Considerations 401 Dan Steingart 19.1 Introduction 401 19.2 Boundary Conditions 401 19.2.1 Microbatteries 404 19.2.2 Supercapacitors 405 19.3 Primary Energy Storage Approaches 405 19.3.1 Volume-Constrained versus Conformally Demanding Approaches 408 19.3.2 Caveat Emptor 409 19.3.3 FutureWork and First-Order Problems 409 References 410 20 Thermoelectric Energy Harvesting in Aircraft 415 Thomas Becker, Alexandros Elefsiniotis, andMichail E. Kiziroglou 20.1 Introduction 415 20.2 Aircraft Standardization 416 20.3 AutonomousWireless Sensor Systems 417 20.4 Thermoelectric Energy Harvesting in Aircraft 419 20.4.1 Efficiency of a Thermoelectric Energy Harvesting Device 420 20.4.2 StaticThermoelectric Energy Harvester 421 20.4.3 Dynamic Thermoelectric Energy Harvester 423 20.5 Design Considerations 425 20.6 Applications 427 20.6.1 StaticThermoelectric Harvester for Aircraft Seat Sensors 427 20.6.2 The Dynamic Thermoelectric Harvesting Prototype 428 20.6.3 Heat Storage Thermoelectric Harvester for Aircraft Strain Sensors 428 20.6.4 Outlook 430 20.7 Conclusions 432 References 433 21 Powering Pacemakers with Heartbeat Vibrations 435 M. Amin Karami and Daniel J. Inman 21.1 Introduction 435 21.2 Design Specifications 436 21.3 Estimation of Heartbeat Oscillations 437 21.4 Linear Energy Harvesters 438 21.5 Monostable Nonlinear Harvesters 441 21.6 Bistable Harvesters 446 21.7 Experimental Investigations 450 21.8 Heart Motion Characterization 450 21.9 Conclusions 456 Acknowledgment 457 References 457 Index 459

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB20061199
  • ISBN
    • 9783527319022
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Weinheim
  • ページ数/冊数
    xxii, 468 p
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ