Hidden Markov models : applications to financial economics
著者
書誌事項
Hidden Markov models : applications to financial economics
(Advanced studies in theoretical and applied econometrics, v. 40)
Springer Science+Business Media, [20--], c2004
- : softcover
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Originally published by Kluwer Academic Publishers, Boston in 2004, softcover reprint of the hardcover 1st edition 2004"--T.p. verso
内容説明・目次
内容説明
Markov chains have increasingly become useful way of capturing stochastic nature of many economic and financial variables. Although the hidden Markov processes have been widely employed for some time in many engineering applications e.g. speech recognition, its effectiveness has now been recognized in areas of social science research as well. The main aim of Hidden Markov Models: Applications to Financial Economics is to make such techniques available to more researchers in financial economics. As such we only cover the necessary theoretical aspects in each chapter while focusing on real life applications using contemporary data mainly from OECD group of countries. The underlying assumption here is that the researchers in financial economics would be familiar with such application although empirical techniques would be more traditional econometrics. Keeping the application level in a more familiar level, we focus on the methodology based on hidden Markov processes. This will, we believe, help the reader to develop more in-depth understanding of the modeling issues thereby benefiting their future research.
目次
List of Figures. List of Tables. Dedication. Acknowledgements. 1: Introduction. 1. Introduction. 2. Markov Chains. 3. Passage Time. 4. Markov Chains and the Term Structure of Interest Rates. 5. State Space Methods and Kalman Filter. 6. Hidden Markov Models and Hidden Markov Experts. 7. HMM Estimation Algorithm. 8. HMM Parameter Estimation. 9. HMM Most Probable State Sequence: Viterbi Algorithm. 10. HMM Illustrative examples. 2: Volatility in Growth Rate of Real GDP. 1. Introduction. 2. Models. 3. Data. 4. Empirical Results. 5. Conclusion. 3: Linkages among G7 Stock Markets. 1. Introduction. 2. Empirical Technique. 3. Data. 4. Empirical Results. 5. Conclusion. 4: Interplay between Industrial Production and Stock Market. 1. Introduction. 2. Markov Switching Heteroscedasticity Model of Output and Equity. 3. Data. 4. Empirical Results. 5. Conclusion. 5: Linking Inflation and Inflation Uncertainty. 1. Introduction. 2. Empirical Technique. 3. Data. 4. Empirical Results. 5. Conclusion. 6: Exploring Permanent and Transitory Components of Stock Return. 1. Introduction. 2. Markov Switching Heteroscedasticity Model of Stock Return. 3. Data. 4. Empirical Results. 5. Conclusion. 7: Exploring the Relationship between Coincident Financial Market Indicators. 1. Introduction. 2. Markov Switching Coincidence Index Model. 3. Data. 4. Empirical Results. 5. Conclusion. References. Index.
「Nielsen BookData」 より