Feature selection for high-dimensional data

著者

    • Bolón-Canedo, Verónica
    • Sánchez-Maroño, Noelia
    • Alonso Betanzos, Amparo

書誌事項

Feature selection for high-dimensional data

Verónica Bolón-Canedo, Noelia Sánchez-Maroño, Amparo Alonso-Betanzos

(Artificial intelligence : foundations, theory, and algorithms / series editors, Barry O'Sullivan, Michael Wooldridge)

Springer, c2015

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

Includes bibliographical references

内容説明・目次

内容説明

This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers. The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.

目次

Introduction to High-Dimensionality.- Foundations of Feature Selection.- Experimental Framework.- Critical Review of Feature Selection Methods.- Application of Feature Selection to Real Problems.- Emerging Challenges.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB20976710
  • ISBN
    • 9783319218571
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham
  • ページ数/冊数
    xv, 147p
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ