Customer-centric marketing : a pragmatic framework
著者
書誌事項
Customer-centric marketing : a pragmatic framework
MIT Press, c2016
大学図書館所蔵 全11件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [121]-125) and index
内容説明・目次
内容説明
State-of-the-art analytic and quantitative methods for using big data to craft effective real-time, dynamic customer-centric marketing plans.
The revolution in big data has enabled a game-changing approach to marketing. The asynchronous and continuous collection of customer data carries rich signals about consumer preferences and consumption patterns. Use of this data can make marketing adaptive, dynamic, and responsive to changes in individual customer behavior. This book introduces state-of-the-art analytic and quantitative methods for customer-centric marketing (CCM). Rather than using a snapshot from the data to plot a single campaign-centric marketing plan, these methods draw on cutting-edge research in optimization and interactive marketing with the goal of maximizing long-term profit from data collected over time. The aim is to teach readers to apply optimization tools to derive analytical solutions leading to customized, dynamic, proactive, and real-time marketing decisions.
The book develops the CCM framework and illustrates it with four cases that span the life cycle of marketing: pricing, win-back, cross-sales, and customer service allocation. The text walks the reader through real-world examples of applying the framework (supported by spreadsheet models available online), then explains the key concepts: modeling consumer choice; segmenting customers into latent classes based on sensitivity; computing customer lifetime value (CLV); and dynamic optimization. The reader then learns to incorporate the continuous learning of customer preference into an adaptive feedback loop for marketing decisions. The book can be used as a text for MBA students or as a professional reference.
This book is based on joint research developed at Carnegie Mellon University when both authors were on the faculty at the Tepper School of Business.
「Nielsen BookData」 より