Electricity and magnetism

Bibliographic Information

Electricity and magnetism

P.F. Kelly

CRC Press, c2015

Available at  / 2 libraries

Search this Book/Journal

Note

Includes index

Description and Table of Contents

Description

The final volume in a three-part series, Electricity and Magnetism provides a detailed exposition of classical electric and magnetic fields and analyses of linear electric circuits. The book applies the principles of classical mechanics to systematically reveal the laws governing observed electric and magnetic phenomena. The text culminates in Maxwell's Equations, which, although only four in number, can completely describe all physical aspects of electromagnetism. The specific topics covered in Electricity and Magnetism include: Electric force, field, and potential Gauss's Law for Electric Fields Capacitance and networks of capacitors Electric current Resistance and networks of resistors Kirchoff's Rules Steady state and time-dependent DC circuit dynamics Magnetic force and field Production of magnetic fields Ampere's Law Gauss's Law for Magnetic Fields Faraday's Law Induction and inductance AC-driven circuit dynamics and energetics Maxwell's Equations and their plane-wave vacuum solutions This text extends the rigorous calculus-based introduction to classical physics begun in Elements of Mechanics. It may be studied independently of the second volume, Properties of Materials. With more than four hundred and fifty problems included, it can serve as a primary textbook in an introductory physics course, as a student supplement, or as an exam review for graduate or professional studies.

Table of Contents

Electric Charge, Coulomb's Law, Electric Field. Electric Dipole, Motion of Charged Particles. Continuous Charge Distributions. Above a Uniformly Charged Rectangular Plate. Electric Flux and Gauss's Law. More Gauss's Law. Electrostatic Implications and Potential Energy. Potentially Fun! Electrostatic Potential Energy. Rife with Potential. Potentials, Fields, and All That. Capacitance. Capacitors in Series and Parallel. Energetics of Capacitance. Dielectrics. Energetics of Dipoles. Electric Current. Electric Current Density, Ohm's Law, and Resistance. Resistance Is Not Futile. Resistors in Series and Parallel. DC Circuits Melange. Timely Applications of Kirchoff's Rules. More RC Circuits and Segue to Magnetism. The Lorentz Force. Current, Lorentz Force, and Torque. Magnetic Torque on Current Loops. Back to Moving Charged Particles. The Hall Effect. M-M-More Magnetic Sources. Interacting Wires and Ampere's Law. Ampere and Solenoids. The General Form of Ampere's Law. Gauss's Law for Magnetism. Magnetism in Matter. Faraday's Law. Motional EMF. Inductance. RL Circuits. Mutual Inductance. LC Circuits. RCL Circuits. AC Circuits. Inductive and Capacitive AC Circuits. RCL AC Circuits. Power Dissipation in RCL AC Circuits. The Pinnacle: Maxwell's Equations. Analysis of Maxwell's Equations in Vacuum. Wavelike Solutions of Maxwell's Vacuum Equations. The Poynting Vector. Electromagnetic Waves Carry Momentum, Too. Epilogue. Electricity and Magnetism Problems.

by "Nielsen BookData"

Details

  • NCID
    BB21485281
  • ISBN
    • 9781482206357
  • LCCN
    2015304698
  • Country Code
    us
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Boca Raton, Fla.
  • Pages/Volumes
    xiv, 404 p.
  • Size
    27 cm
  • Classification
  • Subject Headings
Page Top