Photon absorption models in nanostructured semiconductor solar cells and devices

著者

書誌事項

Photon absorption models in nanostructured semiconductor solar cells and devices

Antonio Luque, Alexander Virgil Mellor

(Springer briefs in applied sciences and technology)

Springer, c2015

  • : pbk.

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

Includes bibliographical references

内容説明・目次

内容説明

This book is intended to be used by materials and device physicists and also solar cells researchers. It models the performance characteristics of nanostructured solar cells and resolves the dynamics of transitions between several levels of these devices. An outstanding insight into the physical behaviour of these devices is provided, which complements experimental work. This therefore allows a better understanding of the results, enabling the development of new experiments and optimization of new devices. It is intended to be accessible to researchers, but also to provide engineering tools which are often only accessible to quantum physicists. Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices is intended to provide an easy-to-handle means to calculate the light absorption in nanostructures, the final goal being the ability to model operational behaviour of nanostructured solar cells. It allows researchers to design new experiments and improve solar cell performances, and offers a means for the easy approximate calculation of the energy spectrum and photon absorption coefficients of nanostructures. This calculation is based on the effective mass model and uses a new Hamiltonian called the Empirical kp Hamiltonian, which is based on a four band kp model.

目次

Introduction.- Calculations derived of the single band effective mass Equation.- Four band approximation.- Interband optical absorption in quantum well solar cells.- Conclusions.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ