Mathematics and methodology for economics : applications, problems and solutions
Author(s)
Bibliographic Information
Mathematics and methodology for economics : applications, problems and solutions
(Springer texts in business and economics)
Springer, c2016
Available at 4 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes index
Description and Table of Contents
Description
This book about mathematics and methodology for economics is the result of the lifelong experience of the authors. It is written for university students as well as for students of applied sciences. This self-contained book does not assume any previous knowledge of high school mathematics and helps understanding the basics of economic theory-building. Starting from set theory it thoroughly discusses linear and non-linear functions, differential equations, difference equations, and all necessary theoretical constructs for building sound economic models. The authors also present a solid introduction to linear optimisation and game theory using production systems. A detailed discussion on market equilibrium, in particular on Nash Equilibrium, and on non-linear optimisation is also provided. Throughout the book the student is well supplied with numerous examples, some 2000 problems and their solutions to apply the knowledge to economic theories and models.
Table of Contents
Sets, Numbers and Vectors.- Production Systems.- Mappings, Functions.- Affine and Linear Functions.- Linear Optimisation, Duality. Zero-Sum Games.- Functions, Their Limits, and Their Derivatives.- Nonlinear Functions.- Nonlinear Optimisation.- Set Valued Functions. Equilibria. Games.- Integrals.- Differential Equations.- Difference Equations.- Models and Theories in Economics.
by "Nielsen BookData"