Sampling theory, a renaissance : compressive sensing and other developments
著者
書誌事項
Sampling theory, a renaissance : compressive sensing and other developments
(Applied and numerical harmonic analysis / series editor, John J. Benedetto)
Birkhäuser , Springer, c2015
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Reconstructing or approximating objects from seemingly incomplete information is a frequent challenge in mathematics, science, and engineering. A multitude of tools designed to recover hidden information are based on Shannon's classical sampling theorem, a central pillar of Sampling Theory. The growing need to efficiently obtain precise and tailored digital representations of complex objects and phenomena requires the maturation of available tools in Sampling Theory as well as the development of complementary, novel mathematical theories. Today, research themes such as Compressed Sensing and Frame Theory re-energize the broad area of Sampling Theory. This volume illustrates the renaissance that the area of Sampling Theory is currently experiencing. It touches upon trendsetting areas such as Compressed Sensing, Finite Frames, Parametric Partial Differential Equations, Quantization, Finite Rate of Innovation, System Theory, as well as sampling in Geometry and Algebraic Topology.
目次
Part I: Sparsity Models.- Estimation in High Dimensions: A Geometric Perspective.- Convex Recovery of a Structured Signal from Independent Random Linear Measurements.- Low Complexity Regularization of Linear Inverse Problems.- Part II: Frames with Benefits.- Noise-shaping Quantization Methods for Frame-based and Compressive Sampling Systems.- Fourier Operations in Applied Harmonic Analysis.- The Fundamentals of Spectral Tetris Frame Constructions.- Part III: Bandlimitation Recast.- System Approximation and Generalized Measurements in Modern Sampling Theory.- Entire Functions in Generalized Bernstein Spaces and Their Growth Behavior.- Sampling and Geometry.- A Sheaf-theoretic Perspective on Sampling.- Part IV: Solutions of Parametric PDEs.- How to Best Sample a Solution Manifold?.- On the Stability of Polynomial Interpolation using Hierarchical Sampling.- Part V: Implementation.- OperA: Operator-based Annihilation for Finite-Rate-of-Innovation Signal Sampling.- Digital Adaptive Calibration of Data Converters using Independent Component Analysis.
「Nielsen BookData」 より