Strength and toughness of materials
著者
書誌事項
Strength and toughness of materials
Springer, c2004 , Amazon [manufacture]
- : pbk
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Reprint. Originally published: Tokyo : Springer , c2004
Printed in Japan
Includes bibliographical references and index
"This English translation is based on the Japanese original: Strength and Toughness of Materials by T. Kobayashi, published by AGNE Gijutsu Center, c2000"--T.p.verso
"This publication was supported by the 2003 Grant-in Aid for Publication Scientific Research Results of Japan Society for the Promotion of Science"--Pref
内容説明・目次
内容説明
As the shift from the Metal Age progresses, materials engineers and materials scientists seek new analytical and design methods to create stronger and more reliable materials. Based on extensive research and developmental work done at the author's multi-disciplinary material laboratory, this graduate-level and professional reference addresses the relationship between fracture mechanisms (macroscale) and the microscopic, with the goal of explaining macroscopic fracture behavior based on a microscopic fracture mechanism. A careful fusion of mechanics and materials science, this text and monograph systematically considers an array of materials, from metals through ceramics and polymers, and demonstrates lab-tested strategies to develop desirable high-temperature materials for technological applications.
目次
1 Introduction.- 1.1 Development of Materials and their Characteristics.- 1.2 Fracture and Damage.- 1.3 Rise of Fracture Mechanics and Strengthening and Toughening.- 2 Basic Concepts of Fracture Mechanics.- 2.1 Fracture Toughness.- 2.1.1 General Concepts of Fracture Toughness from an Energy Criterion.- 2.1.2 Linear Elastic Fracture Mechanics in a Crack-tip Stress Field.- 2.1.3 Plastic Zone at Crack-tip.- 2.2 Elastic-Plastic Fracture Mechanics.- 2.3 Measurement of Fracture Toughness.- 2.4 Application of Fracture Toughness.- 3 Principles of Strength and Toughness.- 3.1 Classical Fracture Theory.- 3.2 Microstructure and Fracture Mechanism.- 3.3 Inexpensive Toughness Evaluation Method-Instrumented Charpy Impact Test.- 3.4 Specimen Size Effect and J-Q Theory.- 4 Steels.- 4.1 Solid Phase Transformation in Steels.- 4.1.1 Precipitation of Proeutectiod Ferrite.- 4.1.2 Pearlitic Transformation.- 4.1.3 Bainitic Transformation.- 4.1.4 Martensitic Transformation.- 4.2 Correlations among Strength, Fracture and Microstructures.- 4.3 Strengthening and Toughening of Practical Steels.- 4.3.1 Ferritic-Pearlitic Steel.- 4.3.2 Bainitic and Martensitic Steels.- 4.3.3 Maraging Steel.- 4.3.4 TRIP Steel.- 4.3.5 Dual Phase Steel.- 4.3.6 Controlled Rolling.- 4.4 Degradation in Steels.- 4.5 Strength and Fracture of Carburized Steel.- 5 Ductile Cast Iron.- 5.1 Fracture Mechanism in Ductile Cast Iron.- 5.2 Evaluation of Fracture Toughness.- 5.2.1 Definition of a Crack Initiation Point.- 5.2.2 Ductile-Brittle Transition Behavior.- 5.3 Influence of Microstructure on Fracture Toughness.- 5.3.1 The Effect of Matrix Microstructure.- 5.3.2 Effects of Morphology and Distribution of Graphite.- 5.4 Strengthening and Toughening of Ductile Cast Iron.- 5.4.1 Austempered Ductile Cast Iron.- 5.4.2 Strengthening and Toughening Based on Traditional Matrix Phases.- 5.5 Fatigue Characteristics of Ductile Cast Iron.- 6 Wrought Aluminum Alloys.- 6.1 Aluminum Alloys and their Features at Deformation.- 6.2 Microstructure and the Fracture Mechanism.- 6.2.1 General Relationship between Strength and Fracture in Aluminum Alloys.- 6.2.2 Formation of Voids and Secondary Phase Particles in Aluminum Alloys.- 6.2.3 Growth and Coalescence Processes of Voids.- 6.3 Ductile Fracture Details.- 6.3.1 Classification of Deformation and Fracture Mechanisms for Age Hardening-type Alloys.- 6.3.2 Ductile Fracture Theories.- 6.4 Testing Methods for Fracture Toughness of Aluminum Alloys-R Curves Method.- 6.5 Toughness of Aluminum Alloys and the Metallurgical Factors.- 6.5.1 Al-Li Alloy.- 6.5.2 Other Wrought Alloys.- 7 Cast Aluminum Alloys.- 7.1 Aluminum Alloy Casting and Solidification.- 7.2 Solidification Microstructure and Fracture Toughness.- 7.2.1 Secondary Phase Particle and Fracture.- 7.2.2 Influence of Dendrite Arm Spacing.- 7.2.3 Effects of Gas Content and Impurities.- 7.2.4 Influence of Modification Treatment.- 7.2.5 Influence of Casting Defects.- 7.3 Fatigue Characteristics.- 8 Metal Matrix Composites.- 8.1 Key Points of Composite Materials.- 8.2 General Deformation and Fracture Mode.- 8.2.1 Formation of Microdamage Caused by Deformation.- 8.2.2 Fracture Process.- 8.2.3 Crack Growth Mode under Monotonic Loading.- 8.3 Improvement of Fracture Characteristics by Controlling MMC Microstructure.- 8.3.1 Microstructural Factor of Reinforcement.- 8.3.2 Microstructural Factors About Interfaces.- 8.3.3 Microstructural Factors About the Matrix.- 8.4 Fatigue Fracture Behavior.- 8.4.1 Short Fatigue Crack.- 8.4.2 Long Fatigue Crack.- 9 Titanium Alloys.- 9.1 Mechanical Characteristics of Titanium Alloys.- 9.1.1 Mechanical Properties of Titanium Alloys.- 9.1.2 Classification of Titanium Alloys and their Mechanical Properties.- 9.2 Influence of Microstructure on Fracture Toughness.- 9.2.1 Equiaxed ? Microstructure.- 9.2.2 Acicular ? Microstructure.- 9.2.3 Microstructural Units Controlling Crack Propagation Initiation Toughness.- 9.3 Micromechanism of Crack Initiation and Crack Propagation.- 9.4 Embrittlement and Strengthening of Titanium Alloys by Hydrogen.- 9.4.1 Embrittlement.- 9.4.2 Strengthening.- 9.5 Strain Induced Transformation and Mechanical Properties.- 10 Intermetallic Compounds.- 10.1 Application of Fracture Mechanics Testing.- 10.1.1 Effect of Specimen Size.- 10.1.2 Notched Specimens.- 10.1.3 Detection of Crack Initiation Point.- 10.2 Influence of Alloying.- 10.3 Influence of Microstructure Control.- 10.3.1 Ti3Al-based Alloy.- 10.3.2 TiAl-based Alloys.- 10.3.3 Composite Materials.- 10.4 Environmental Embrittlement.- 10.4.1 Hydrogen Absorption.- 10.4.2 Hydrogen Embrittlement.- 11 Ceramics.- 11.1 Characteristics of Strength and Toughness in Ceramics.- 11.1.1 Linear Elastic Fracture and Non-linear Fracture.- 11.1.2 Influence of Various Material Science and Mechanical Factors on Fracture Toughness.- 11.1.3 Strengthening and Toughening for Ceramics.- 11.2 Evaluation Methods for Toughness.- 11.2.1 Analysis Method of Absorbed Energy by Instrumented Charpy Testing Method.- 11.2.2 Dynamic Fracture Toughness Testing.- 12 Polymers.- 12.1 Characteristics and Deformation Mechanisms of Polymers.- 12.2 Mechanical Properties of Polymers.- 12.2.1 Fracture Toughness.- 12.2.2 Instrumented Charpy Impact Testing.- 12.2.3 Fatigue Crack Propagation Characteristics.- 12.2.4 Usual Fatigue and Impact Fatigue Tests.- SI Units and Conversion Table.
「Nielsen BookData」 より