Physiology and biochemistry
Author(s)
Bibliographic Information
Physiology and biochemistry
(Drought stress tolerance in plants / Mohammad Anwar Hossain ... [et al.], v. 1)
Springer International, c2016
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drought stress. Identification of the potential novel genes responsible for drought tolerance in crop plants will contribute to understanding the molecular mechanism of crop responses to drought stress. The discovery of novel genes, the analysis of their expression patterns in response to drought stress, and the determination of their potential functions in drought stress adaptation will provide the basis of effective engineering strategies to enhance crop drought stress tolerance. Although the in-depth water stress tolerance mechanisms is still unclear, it can be to some extent explained on the basis of ion homeostasis mediated by stress adaptation effectors, toxic radical scavenging, osmolyte biosynthesis, water transport, and long distance signaling response coordination. Importantly, complete elucidation of the physiological, biochemical, and molecular mechanisms for drought stress, perception, transduction, and tolerance is still a challenge to the plant biologists. The findings presented in volume 1 call attention to the physiological and biochemical modalities of drought stress that influence crop productivity, whereas volume 2 summarizes our current understanding on the molecular and genetic mechanisms of drought stress resistance in plants.
Table of Contents
Drought Stress in Plants: Causes, Consequence and Tolerance.- Drought Stress Memory and Drought Stress Tolerance in Plants: Biochemical and Molecular Basis.- Mechanisms of Hormone Regulation for Drought Tolerance in Plants.- Chemical Priming-Induced Drought Stress Tolerance in Plants.- Osmotic Adjustment and Plant Adaptation to Drought Stress.- Interplay Between Glutathione, Salicylic Acid and Ethylene to Combat Environmental Stress.- Function of Heat Shock Proteins in Drought Tolerance Regulation of Plants.- Ascorbate - Glutathione Cycle - Controlling the Redox Environment for Drought Tolerance.- Sulfur Metabolism and Drought Stress Tolerance in Plants.- Effects of Elevated Carbon Dioxide and Drought Stress on Agricultural Crops.- Drought Stress Tolerance in Relation to Polyamine Metabolism in Plants.- Plant-Rhizobacteria Interaction and Drought Stress Tolerance in Plants.- Signaling Role of ROS in Modulating Drought Stress Tolerance.- Improving Crop Yield Under Drought Stress Through Physiological Breeding.- Photosynthesis, Antioxidant Protection and Drought Tolerance in Plants.- Glyoxalase Pathway and Drought Stress Tolerance in Plants.- Drought Tolerant Wild Species are the Important Sources of Genes and Molecular Mechanisms Studies: Implication for Developing Drought Tolerant Crops.- Manipulation of Programmed Cell Death Pathways Enhances Osmotic Stress Tolerance in Plants: Physiological and Molecular Insights.- Determination of compositional principles for herbaceous plantings in dry conditions.- Determination of compositional principles for herbaceous plantings in dry conditions.
by "Nielsen BookData"