State space and unobserved component models : theory and applications
著者
書誌事項
State space and unobserved component models : theory and applications
Cambridge University Press, 2012
- : pbk
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 351-372) and indexes
First published 2004
First paperback edition 2012
内容説明・目次
内容説明
This 2004 volume offers a broad overview of developments in the theory and applications of state space modeling. With fourteen chapters from twenty-three contributors, it offers a unique synthesis of state space methods and unobserved component models that are important in a wide range of subjects, including economics, finance, environmental science, medicine and engineering. The book is divided into four sections: introductory papers, testing, Bayesian inference and the bootstrap, and applications. It will give those unfamiliar with state space models a flavour of the work being carried out as well as providing experts with valuable state of the art summaries of different topics. Offering a useful reference for all, this accessible volume makes a significant contribution to the literature of this discipline.
目次
- Part I. State Space Models: 1. Introduction to state space time series analysis James Durbin
- 2. State structure, decision making and related issues Peter Whittle
- 3. An introduction to particle filters Simon Maskell
- Part II. Testing: 4. Frequence domain and wavelet-based estimation for long-memory signal plus noise models Katsuto Tanaka
- 5. A goodness-of-fit test for AR (1) models and power against state-space alternatives T. W. Anderson and Michael A. Stephens
- 6. Test for cycles Andrew C. Harvey
- Part III. Bayesian Inference and Bootstrap: 7. Efficient Bayesian parameter estimation Sylvia Fruhwirth-Schnatter
- 8. Empirical Bayesian inference in a nonparametric regression model Gary Koop and Dale Poirier
- 9. Resampling in state space models David S. Stoffer and Kent D. Wall
- Part IV. Applications: 10. Measuring and forecasting financial variability using realised variance Ole E. Barndorff-Nielsen, Bent Nielsen, Neil Shephard and Carla Ysusi
- 11. Practical filtering for stochastic volatility models Jonathan R. Stroud, Nicholas G. Polson and Peter Muller
- 12. On RegComponent time series models and their applications William R. Bell
- 13. State space modeling in macroeconomics and finance using SsfPack in S+Finmetrics Eric Zivot, Jeffrey Wang and Siem Jan Koopman
- 14. Finding genes in the human genome with hidden Markov models Richard Durbin.
「Nielsen BookData」 より