What if there were no significance tests?
著者
書誌事項
What if there were no significance tests?
(Psychology press and Routledge classic editions)
Routledge, 2016
Classic ed
- : hbk
大学図書館所蔵 件 / 全1件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"First edition published by Psychology Press 1997"--T.p. verso
Includes bibliographical references and indexes
内容説明・目次
内容説明
The classic edition of What If There Were No Significance Tests? highlights current statistical inference practices. Four areas are featured as essential for making inferences: sound judgment, meaningful research questions, relevant design, and assessing fit in multiple ways. Other options (data visualization, replication or meta-analysis), other features (mediation, moderation, multiple levels or classes), and other approaches (Bayesian analysis, simulation, data mining, qualitative inquiry) are also suggested.
The Classic Edition's new Introduction demonstrates the ongoing relevance of the topic and the charge to move away from an exclusive focus on NHST, along with new methods to help make significance testing more accessible to a wider body of researchers to improve our ability to make more accurate statistical inferences. Part 1 presents an overview of significance testing issues. The next part discusses the debate in which significance testing should be rejected or retained. The third part outlines various methods that may supplement significance testing procedures. Part 4 discusses Bayesian approaches and methods and the use of confidence intervals versus significance tests. The book concludes with philosophy of science perspectives.
Rather than providing definitive prescriptions, the chapters are largely suggestive of general issues, concerns, and application guidelines. The editors allow readers to choose the best way to conduct hypothesis testing in their respective fields. For anyone doing research in the social sciences, this book is bound to become "must" reading. Ideal for use as a supplement for graduate courses in statistics or quantitative analysis taught in psychology, education, business, nursing, medicine, and the social sciences, the book also benefits independent researchers in the behavioral and social sciences and those who teach statistics.
目次
New Introduction. Preface. Part I: Overview. L.L. Harlow, Significance Testing Introduction and Overview. Part II: The Debate: Against and For Significance Testing. J.Cohen, The Earth Is Round. F.L. Schmidt, J. Hunter, Eight Objections to the Discontinuation of Significance Testing in the Analysis of Research Data. S.A. Mulaik, N.S. Raju, R. Harshman, There Is a Time and Place for Significance Testing. R.P. Abelson, A Retrospective on the Significance Test Ban of 1999 (If There Were No Significance Tests, They Would Be Invented). Part III:Suggested Alternatives to Significance Testing. R.J. Harris, Reforming Significance Testing via Three-Valued Logic. J.S. Rossi, Spontaneous Recovery of Verbal Learning: A Case Study in the Failure of Psychology as a Cumulative Science. J.H. Steiger, R.T. Fouladi,Noncentrality Interval Estimation and the Evaluation of Statistical Models. R.P. McDonald,Goodness of Approximation in the Linear Model. Part IV: A Bayesian Approach to Hypothesis Testing. R.M. Pruzek, An Introduction to Bayesian Inference and Its Application.D. Rindskopf, Testing 'Small,' Not Null, Hypotheses: Classical and Bayesian Approaches.C.S. Reichardt, H.F. Gollob, When Confidence Intervals Should Be Used Instead of Statistical Significance Tests, and Vice Versa. Part V: Philosophy of Science Issues. W.W. Rozeboom, Good Science Is Abductive, Not Hypothetico-Deductive. P.E. Meehl, The Problem Is Epistemology, Not Statistics: Replace Significance Tests by Confidence Intervals and Quantify Accuracy of Risky Numerical Predictions.
「Nielsen BookData」 より