Bioenergy from wood : sustainable production in the topics

著者

    • Seifert, Thomas

書誌事項

Bioenergy from wood : sustainable production in the topics

Thomas Seifert, editor

(Managing forest ecosystems, v. 26)

Springer, c2014

  • hardback

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

This book is written for scientists and practitioners interested in deepening their knowledge of the sustainable production of bioenergy from wood in tropical and sub-tropical countries. Utilising the value chain concept, this book outlines the necessary aspects for managing sustainable bioenergy production. A wide range of topics is covered including biomass localization, modelling and upscaling, production management in woodlands and plantations, and transport and logistics. Biomass quality and conversion pathways are examined in order to match the conversion technology with the available biomass. A section is dedicated to issues surrounding sustainability. The issues, covered in a life-cycle assessment of the bioenergy system, include socio-economic challenges, local effects on water, biodiversity, nutrient-sustainability and global impacts. Through this holistic approach and supporting examples from tropical and sub-tropical countries, the reader is guided in designing and implementing a value chain as the main management instrument for sustainable wood.

目次

1. Bioenergy from wood in the tropics 1.1 Woody biomass - an antiquated or a modern source of energy? 1.2 The key concept of sustainable production of bioenergy 1.3 Managing the value chains 1.4 The scope and structure of this book 1.5 References 2. Localisation of biomass potentials 2.1 Introduction 2.2 Terrestrial inventory methods 2.3 Remote sensing methods using LiDAR or photogrammetry to estimate tree or stand parameters 2.4 Remote sensing methods estimating bulk biomass 2.5 Case study of integrated approaches and data fusion 2.6 Conclusions 2.7 References 3. Modelling and simulation of tree biomass 3.1 Introduction 3.2 Upscaling from biomass samples to tree biomass 3.3 Upscaling from the tree to the stand level 3.4 Model evaluation and model error 3.5 Simulation of biomass in growth models 3.6 Conclusions 3.7 References 4. Managing Southern African woodlands for biomass production: The potential challenges and opportunities 4.1 Introduction 4.2 Vegetation types of Southern Africa 4.3Woodland utilization and associated impacts 4.4 Productivity potential in the different biomes with case study data from the sub-region 4.5 Management practices for improved productivity in extensively managed woodlands in southern African 4.6 Institutional frameworks and policy directions for managing extensively managed woodlands in southern Africa 4.7 Conclusions 4.8 References 5. Biomass production in intensively managed forests 5.1 Introduction 5.2 Matching highly productive tree taxa with specific site types and bio-energy production systems. 5.3 Selecting the optimum combination of stand density, harvesting system and rotation length. 5.4 Optimising growth conditions at time of establishment through harvest residue (slash) management and soil tillage. 5.5 Intensive cultural management to maximise growth resource utilization 5.6 Interactions among intensive silvicultural operations 5.7 Intensified silviculture, fertilization and the carbon footprint 5.8 Harvesting larger percentages of biomass from the stand than conventional practices. 5.9 References 6. Biomass Harvesting and logistics 6.1 Introduction 6.2 Biomass felling and extraction harvesting equipment 6.3 Collection and extraction equipment and machinery 6.4 Chipping equipment and machinery 6.5 Biomass sources and harvesting systems 6.6 Activities at roadside landing, terminal or plant 6.7 Secondary transport of biomass 6.8 Managing biomass trade and supply 6.9 Managing feedstock supply and supply cost curves 6.10 Conclusion 6.11 References 7. Biomass conversion to bioenergy products 7.1 Introduction 7.2 Types of bioenergy products 7.3 Thermochemical conversion technologies 7.4 Biochemical Conversion Technologies 7.5 Integration of different conversion technologies 7.6 Technology maturity and economic considerations for biomass conversion 7.7 Conclusion 7.8 References 8. Biomass Quality 8.1 Introduction 8.2 Drying and Storage 8.3 Particle Size 8.4 Moisture Content 8.5 Density 8.6 Chemical Composition 8.7 Elemental Composition 8.8 Calorific Value 8.9 Ash Content 8.10 Volatile Content 8.11 Biomass Requirements 8.12 References 9 Socio-economic aspects of rural bio-energy production 9.1 Introduction 9.2 Use of and dependency on biomass for energy in developing countries 9.3 Rural energy use and alternatives to fuelwood 9.4 Progress up the energy ladder and implications for rural users of energy 9.5 Costs and benefits of rural energy production 9.6 Role of rural communities in bioenergy strategies 9.7 Conclusion 9.8 References10. Ecological impacts of biomass production at stand and landscape levels 10.1 Introduction 10.2 Impacts at the landscape level 10.3 Impacts at the site level 10.4 References 11. Determination of the environmental implications of bio-energy production using a life-cycle assessment approach 11.1 Introduction 11.2 Life-Cycle Assessment 11.3 Assessing lignocellulosic bioenergy systems using LCA - a case study 11.4 Conclusions 11.5 References

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ