Multiconfigurational quantum chemistry
著者
書誌事項
Multiconfigurational quantum chemistry
Wiley, c2016
- : cloth
大学図書館所蔵 全8件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
Other authors: Roland Lindh, Per Åke Malmqvist, Valera Veryazov, Per-Olof Widmark
内容説明・目次
内容説明
The first book to aid in the understanding of multiconfigurational quantum chemistry, Multiconfigurational Quantum Chemistry demystifies a subject that has historically been considered difficult to learn. Accessible to any reader with a background in quantum mechanics and quantum chemistry, the book contains illustrative examples showing how these methods can be used in various areas of chemistry, such as chemical reactions in ground and excited states, transition metal and other heavy element systems. The authors detail the drawbacks and limitations of DFT and coupled-cluster based methods and offer alternative, wavefunction-based methods more suitable for smaller molecules.
目次
Preface xi
Conventions and Units xiii
1 Introduction 1
1.1 References 4
2 Mathematical Background 7
2.1 Introduction 7
2.2 Convenient Matrix Algebra 7
2.3 Many-Electron Basis Functions 11
2.4 Probability Basics 14
2.5 Density Functions for Particles 16
2.6 Wave Functions and Density Functions 17
2.7 Density Matrices 18
2.8 References 22
3 Molecular Orbital Theory 23
3.1 Atomic Orbitals 24
3.1.1 The Hydrogen Atom 24
3.1.2 The Helium Atom 26
3.1.3 Many Electron Atoms 28
3.2 Molecular Orbitals 29
3.2.1 The Born-Oppenheimer Approximation 29
3.2.2 The LCAO Method 30
3.2.3 The Helium Dimer 34
3.2.4 The Lithium and Beryllium Dimers 35
3.2.5 The B to Ne Dimers 35
3.2.6 Heteronuclear Diatomic Molecules 37
3.2.7 Polyatomic Molecules 39
3.3 Further Reading 41
4 Hartree-Fock Theory 43
4.1 The Hartree-Fock Theory 44
4.1.1 Approximating the Wave Function 44
4.1.2 The Hartree-Fock Equations 45
4.2 Restrictions on The Hartree-Fock Wave Function 49
4.2.1 Spin Properties of Hartree-Fock Wave Functions 50
4.3 The Roothaan-Hall Equations 53
4.4 Practical Issues 55
4.4.1 Dissociation of Hydrogen Molecule 55
4.4.2 The Hartree-Fock Solution 56
4.5 Further Reading 57
4.6 References 58
5 Relativistic Effects 59
5.1 Relativistic Effects on Chemistry 59
5.2 Relativistic Quantum Chemistry 62
5.3 The Douglas-Kroll-Hess Transformation 64
5.4 Further Reading 66
5.5 References 66
6 Basis Sets 69
6.1 General Concepts 69
6.2 Slater Type Orbitals, STOs 70
6.3 Gaussian Type Orbitals, GTOs 71
6.3.1 Shell Structure Organization 71
6.3.2 Cartesian and Real Spherical Harmonics Angular Momentum Functions 72
6.4 Constructing Basis Sets 72
6.4.1 Obtaining Exponents 73
6.4.2 Contraction Schemes 73
6.4.3 Convergence in the Basis Set Size 77
6.5 Selection of Basis Sets 79
6.5.1 Effect of the Hamiltonian 79
6.5.2 Core Correlation 80
6.5.3 Other Issues 81
6.6 References 81
7 Second Quantization and Multiconfigurational Wave Functions 85
7.1 Second Quantization 85
7.2 Second Quantization Operators 86
7.3 Spin and Spin-Free Formalisms 89
7.4 Further Reading 90
7.5 References 91
8 Electron Correlation 93
8.1 Dynamical and Nondynamical Correlation 93
8.2 The Interelectron Cusp 94
8.3 Broken Bonds. ( )2 ( )2 97
8.4 Multiple Bonds, Aromatic Rings 99
8.5 Other Correlation Issues 100
8.6 Further Reading 102
8.7 References 102
9 Multiconfigurational SCF Theory 103
9.1 Multiconfigurational SCF Theory 103
9.1.1 The H2 Molecule 104
9.1.2 Multiple Bonds 107
9.1.3 Molecules with Competing Valence Structures 108
9.1.4 Transition States on Energy Surfaces 109
9.1.5 Other Cases of Near-Degeneracy Effects 110
9.1.6 Static and Dynamic Correlation 111
9.2 Determination of the MCSCF Wave Function 114
9.2.1 Exponential Operators and Orbital Transformations 115
9.2.2 Slater Determinants and Spin-Adapted State Functions 117
9.2.3 The MCSCF Gradient and Hessian 119
9.3 Complete and Restricted Active Spaces, the CASSCF and RASSCF Methods 121
9.3.1 State Average MCSCF 125
9.3.2 Novel MCSCF Methods 125
9.4 Choosing the Active Space 126
9.4.1 Atoms and Atomic Ions 126
9.4.2 Molecules Built from Main Group Atoms 128
9.5 References 130
10 The RAS State-Interaction Method 131
10.1 The Biorthogonal Transformation 131
10.2 Common One-Electron Properties 133
10.3 Wigner-Eckart Coefficients for Spin-Orbit Interaction 134
10.4 Unconventional Usage of RASSI 135
10.5 Further Reading 136
10.6 References 136
11 The Multireference CI Method 137
11.1 Single-Reference CI. Nonextensivity 137
11.2 Multireference CI 139
11.3 Further Reading 140
11.4 References 140
12 Multiconfigurational Reference Perturbation Theory 143
12.1 CASPT2 theory 143
12.1.1 Introduction 143
12.1.2 Quasi-Degenerate Rayleigh-Schroedinger Perturbation Theory 144
12.1.3 The First-Order Interacting Space 145
12.1.4 Multiconfigurational Root States 146
12.1.5 The CASPT2 Equations 148
12.1.6 IPEA, RASPT2, and MS-CASPT2 154
12.2 References 155
13 CASPT2/CASSCF Applications 157
13.1 Orbital Representations 158
13.1.1 Starting Orbitals: Atomic Orbitals 162
13.1.2 Starting Orbitals: Molecular Orbitals 164
13.2 Specific Applications 167
13.2.1 Ground State Reactions 167
13.2.2 Excited States-Vertical Excitation Energies 171
13.2.3 Photochemistry and Photophysics 184
13.2.4 Transition Metal Chemistry 194
13.2.5 Spin-Orbit Chemistry 202
13.2.6 Lanthanide Chemistry 207
13.2.7 Actinide Chemistry 209
13.2.8 RASSCF/RASPT2 Applications 212
13.3 References 216
Summary and Conclusion 219
Index 221
「Nielsen BookData」 より