Skyrmions : topological structures, properties, and applications

Author(s)

    • Liu, J Ping
    • Zhang, Zhidong
    • Zhao, Guoping

Bibliographic Information

Skyrmions : topological structures, properties, and applications

edited by J Ping Liu, Zhidong Zhang, Guoping Zhao

(Series in materials science and engineering / B. Cantor, M. J. Goringe)

CRC Press, Taylor & Francis Group, c2017

Available at  / 4 libraries

Search this Book/Journal

Note

Includes bibliographical references and index

Description and Table of Contents

Description

"The book reviews all the aspects of recent developments in research on skyrmions, from the presentation of the observation and characterization techniques to the description of physical properties and expected applications. It will be of great use for all scientists working in this field." - Albert Fert, 2007 Nobel Laureate in Physics (from the Foreword) A skyrmion is a tiny region of reversed magnetization - quasiparticles since they are not present except in a magnetic state, and also give rise to physics that cannot be described by Maxwell's equations. These particles are fascinating subjects for theoretical and experimental studies. Moreover, as a new type of magnetic domain structure with special topological structures, skyrmions feature outstanding magnetic and transport properties and may well have applications in data storage and other advanced spintronic devices, as readers will see in this book. Chapters address the relationships between physical properties of condensed matter, such as the AB effect, Berry phase effect, quantum Hall effect, and topological insulators. Overall, it provides a timely introduction to the fundamental aspects and possible applications of magnetic skyrmions to an interdisciplinary audience from condensed matter physics, chemistry, and materials science.

Table of Contents

Topological structure and properties. Breathing modes of confined skyrmions . Topology of magnetic domains. Dzyaloshinskii- Moriya interaction (DMI). From magnetic vortex to magnetic skyrmion. Skyrmion state in liquid crystal and cubic helimagnet films. Skyrmion spin texture using resonant soft x-ray scattering. Chiral Magnetic Domain Wall Structure in Epitaxial Multilayers. Experimental observations and materials. Formation and stability of skyrmions in low dimensional helimagnets. Creation and Dynamics of Individual Skyrmions in Helimagnets. Manipulation of magnetic skyrmions with spin-polarized STM. Chiral skyrmions in thin magnetic films for magnetic storage technologies. Simulations of skyrmion manipulation in confined geometries. Dynamics of Skyrmionic Spin Structures. Novel topological resonant excitations of coupled skyrmions in Co/Ru/Co nanodisks. Multiple-q States and the Skyrmion Lattice of the Triangular-Lattice. Heisenberg Antiferromagnet under Magnetic Field. Current-Induced Dynamics of Magnetic Skyrmion in Chiral Magnets. Dynamical magnetic skyrmions. Giant Skyrmions Stabilized by Dipole-Dipole Interactions in Thin Ferromagnetic Films. Zero-field stability, hysteretic behavior, and reversal mechanism of skyrmionic textures in nanostructures. Ground state, collective mode, phase soliton and vortex in multiband superconductors. Emerging applications. Current-induced magnetic skyrmions oscillator. Race-track application. Electrical Creation and Manipulation of Magnetic Skyrmion Bubbles. Guiding skyrmion motion on a track. Magnetic Vortex Nanostructures for Biomedical Applications. Rotating skyrmion lattices by spin torques and field or temperature gradients. Artificial Skyrmions

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top