Chemistry : the central science

著者

書誌事項

Chemistry : the central science

Theodore L. Brown ... [et al.] ; contributions by Michael W. Lufaso

Pearson, c2018

14th ed

大学図書館所蔵 件 / 5

この図書・雑誌をさがす

注記

Other authors: H. Eugene LeMay, Jr., Bruce E. Bursten, Catherine J. Murphy, Patrick M. Woodward, Matthew W. Stoltzfus

Includes bibliographical references and index

内容説明・目次

内容説明

For courses in two-semester general chemistry. Accurate, data-driven authorship with expanded interactivity leads to greater student engagement Unrivaled problem sets, notable scientific accuracy and currency, and remarkable clarity have made Chemistry: The Central Science the leading general chemistry text for more than a decade. Trusted, innovative, and calibrated, the text increases conceptual understanding and leads to greater student success in general chemistry by building on the expertise of the dynamic author team of leading researchers and award-winning teachers. In this new edition, the author team draws on the wealth of student data in MasteringTM Chemistry to identify where students struggle and strives to perfect the clarity and effectiveness of the text, the art, and the exercises while addressing student misconceptions and encouraging thinking about the practical, real-world use of chemistry. New levels of student interactivity and engagement are made possible through the enhanced eText 2.0 and Mastering Chemistry, providing seamlessly integrated videos and personalized learning throughout the course . Also available with Mastering Chemistry MasteringTM Chemistry is the leading online homework, tutorial, and engagement system, designed to improve results by engaging students with vetted content. The enhanced eText 2.0 and Mastering Chemistry work with the book to provide seamless and tightly integrated videos and other rich media and assessment throughout the course. Instructors can assign interactive media before class to engage students and ensure they arrive ready to learn. Students further master concepts through book-specific Mastering Chemistry assignments, which provide hints and answer-specific feedback that build problem-solving skills. With Learning CatalyticsTM instructors can expand on key concepts and encourage student engagement during lecture through questions answered individually or in pairs and groups. Mastering Chemistry now provides students with the new General Chemistry Primer for remediation of chemistry and math skills needed in the general chemistry course. Note: You are purchasing a standalone product; MasteringTM Chemistry does not come packaged with this content. Students, if interested in purchasing this title with Mastering Chemistry , ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab & Mastering, search for: 0134292812 / 9780134292816 Chemistry: The Central Science Plus Mastering Chemistry with eText -- Access Card Package Package consists of: 0134294165 / 9780134294162 Mastering Chemistry with Pearson eText -- ValuePack Access Card -- for Chemistry: The Central Science 0134414233 / 9780134414232 Chemistry: The Central Science Mastering Chemistry should only be purchased when required by an instructor.

目次

BRIEF CONTENTS 1. Introduction: Matter, Energy, and Measurement 2. Atoms, Molecules, and Ions 3. Chemical Reactions and Reaction Stoichiometry 4. Reactions in Aqueous Solution 5. Thermochemistry 6. Electronic Structure of Atoms 7. Periodic Properties of the Elements 8. Basic Concepts of Chemical Bonding 9. Molecular Geometry and Bonding Theories 10. Gases 11. Liquids and Intermolecular Forces 12. Solids and Modern Materials 13. Properties of Solutions 14. Chemical Kinetics 15. Chemical Equilibrium 16. Acid-Base Equilibria 17. Additional Aspects of Aqueous Equilibria 18. Chemistry of the Environment 19. Chemical Thermodynamics 20. Electrochemistry 21. Nuclear Chemistry 22. Chemistry of the Nonmetals 23. Transition Metals and Coordination Chemistry 24. The Chemistry of Life: Organic and Biological Chemistry Appendices Mathematical Operations Properties of Water Thermodynamic Quantities for Selected Substances at 298.15 K (25 C) Aqueous Equilibrium Constants Standard Reduction Potentials at 25 C Answers to Selected Exercises Answers to Give It Some Thought Answers to Go Figure Answer to Selected Practice Exercises Glossary Photo and Art Credits DETAILED CONTENTS 1. Introduction: Matter, Energy, and Measurement 1.1 The Study of Chemistry The Atomic and Molecular Perspective of Chemistry Why Study Chemistry? 1.2 Classifications of Matter States of Matter Pure Substances Elements Compounds Mixtures 1.3 Properties of Matter Physical and Chemical Changes Separation of Mixtures 1.4 The Nature of Energy Kinetic Energy and Potential Energy 1.5 Units of Measurement SI Units Length and Mass Temperature Derived SI Units Volume Density Units of Energy 1.6 Uncertainty in Measurement Precision and Accuracy Significant Figures Significant Figures in Calculations 1.7 Dimensional Analysis Conversion Factors Using Two or More Conversion Factors Conversions Involving Volume Chemistry Put To Work: Chemistry and the Chemical Industry A Closer Look: The Scientific Method Chemistry Put To Work: Chemistry in the News Strategies For Success: Estimating Answers Strategies For Success: The Importance of Practice Strategies For Success: The Features of This Book 2. Atoms, Molecules, and Ions 2.1 The Atomic Theory of Matter 2.2 The Discovery of Atomic Structure Cathode Rays and Electrons Radioactivity The Nuclear Model of the Atom 2.3 The Modern View of Atomic Structure Atomic Numbers, Mass Numbers, and Isotopes 2.4 Atomic Weights The Atomic Mass Scale Atomic Weight 2.5 The Periodic Table 2.6 Molecules and Molecular Compounds Molecules and Chemical Formulas Molecular and Empirical Formulas Picturing Molecules 2.7 Ions and Ionic Compounds Predicting Ionic Charges Ionic Compounds 2.8 Naming Inorganic Compounds Names and Formulas of Ionic Compounds Names and Formulas of Acids Names and Formulas of Binary Molecular Compounds 2.9 Some Simple Organic Compounds Alkanes Some Derivatives of Alkanes A Closer Look: Basic Forces A Closer Look: The Mass Spectrometer A Closer Look: What Are Coins Made Of? Chemistry and Life: Elements Required by Living Organisms Strategies For Success: How to Take a Test 3. Chemical Reactions and Reaction Stoichiometry 3.1 Chemical Equations Balancing Equations A Step-by-Step Example of Balancing a Chemical Equation Indicating the States of Reactants and Products 3.2 Simple Patterns of Chemical Reactivity Combination and Decomposition Reactions Combustion Reactions 3.3 Formula Weights Formula and Molecular Weights Percentage Composition from Chemical Formulas 3.4 Avogadro's Number and the Mole Molar Mass Interconverting Masses and Moles Interconverting Masses and Numbers of Particles 3.5 Empirical Formulas from Analyses Molecular Formulas from Empirical Formulas Combustion Analysis 3.6 Quantitative Information from Balanced Equations 3.7 Limiting Reactants Theoretical and Percent Yields Strategies For Success: Problem Solving Chemistry and Life: Glucose Monitoring Strategies For Success: Design an Experiment 4. Reactions in Aqueous Solution 4.1 General Properties of Aqueous Solutions Electrolytes and Nonelectrolytes How Compounds Dissolve in Water Strong and Weak Electrolytes 4.2 Precipitation Reactions Solubility Guidelines for Ionic Compounds Exchange (Metathesis) Reactions Ionic Equations and Spectator Ions 4.3 Acids, Bases, and Neutralization Reactions Acids Bases Strong and Weak Acids and Bases Identifying Strong and Weak Electrolytes Neutralization Reactions and Salts Neutralization Reactions with Gas Formation 4.4 Oxidation-Reduction Reactions Oxidation and Reduction Oxidation Numbers Oxidation of Metals by Acids and Salts The Activity Series 4.5 Concentrations of Solutions Molarity Expressing the Concentration of an Electrolyte Interconverting Molarity, Moles, and Volume Dilution 4.6 Solution Stoichiometry and Chemical Analysis Titrations Chemistry Put To Work: Antacids Strategies For Success: Analyzing Chemical Reactions 5. Thermochemistry 5.1 The Nature of Chemical Energy 5.2 The First Law of Thermodynamics System and Surroundings Internal Energy Relating E to Heat and Work Endothermic and Exothermic Processes State Functions 5.3 Enthalpy Pressure-Volume Work Enthalpy Change 5.4 Enthalpies of Reaction 5.5 Calorimetry Heat Capacity and Specific Heat Constant-Pressure Calorimetry Bomb Calorimetry (Constant-Volume Calorimetry) 5.6 Hess's Law 5.7 Enthalpies of Formation Using Enthalpies of Formation to Calculate Enthalpies of Reaction 5.8 Bond Enthalpies Bond Enthalpies and the Enthalpies of Reactions 5.9 Foods and Fuels Foods Fuels Other Energy Sources A Closer Look: Energy, Enthalpy, and P-V Work A Closer Look: Using Enthalpy as a Guide Chemistry and Life: The Regulation of Body Temperature Chemistry Put To Work: The Scientific and Political Challenges of Biofuels 6. Electronic Structure of Atoms 6.1 The Wave Nature of Light 6.2 Quantized Energy and Photons Hot Objects and the Quantization of Energy The Photoelectric Effect and Photons 6.3 Line Spectra and the Bohr Model Line Spectra Bohr's Model The Energy States of the Hydrogen Atom Limitations of the Bohr Model 6.4 The Wave Behavior of Matter The Uncertainty Principle 6.5 Quantum Mechanics and Atomic Orbitals Orbitals and Quantum Numbers 6.6 Representations of Orbitals The s Orbitals The Orbitals The and Orbitals 6.7 Many-Electron Atoms Orbitals and Their Energies Electron Spin and the Pauli Exclusion Principle 6.8 Electron Configurations Hund's Rule Condensed Electron Configurations Transition Metals The Lanthanides and Actinides 6.9 Electron Configurations and the Periodic Table Anomalous Electron Configurations A Closer Look: Measurement and the Uncertainty Principle A Closer Look: Thought Experiments and Schroedinger's Cat A Closer Look: Probability Density and Radial Probability Functions Chemistry and Life: Nuclear Spin and Magnetic Resonance Imaging 7. Periodic Properties of the Elements 7.1 Development of the Periodic Table 7.2 Effective Nuclear Charge 7.3 Sizes of Atoms and Ions Periodic Trends in Atomic Radii Periodic Trends in Ionic Radii 7.4 Ionization Energy Variations in Successive Ionization Energies Periodic Trends in First Ionization Energies Electron Configurations of Ions 7.5 Electron Affinity Periodic Trends in Electron Affinity 7.6 Metals, Nonmetals, and Metalloids Metals Nonmetals Metalloids 7.7 Trends for Group 1A and Group 2A Metals Group 1A: The Alkali Metals Group 2A: The Alkaline Earth Metals 7.8 Trends for Selected Nonmetals Hydrogen Group 6A: The Oxygen Group Group 7A: The Halogens Group 8A: The Noble Gases A Closer Look: Effective Nuclear Charge Chemistry Put To Work: Ionic Size and Lithium-Ion Batteries Chemistry and Life: The Improbable Development of Lithium Drugs 8. Basic Concepts of Chemical Bonding 8.1 Lewis Symbols and the Octet Rule The Octet Rule 8.2 Ionic Bonding Energetics of Ionic Bond Formation Electron Configurations of Ions of the s- and p-Block Elements Transition Metal Ions 8.3 Covalent Bonding Lewis Structures Multiple Bonds 8.4 Bond Polarity and Electronegativity Electronegativity Electronegativity and Bond Polarity Dipole Moments Comparing Ionic and Covalent Bonding 8.5 Drawing Lewis Structures Formal Charge and Alternative Lewis Structures 8.6 Resonance Structures Resonance in Benzene 8.7 Exceptions to the Octet Rule Odd Number of Electrons Less Than an Octet of Valence Electrons More Than an Octet of Valence Electrons 8.8 Strengths and Lengths of Covalent Bonds A Closer Look: Calculation of Lattice Energies: The Born-Haber Cycle A Closer Look: Oxidation Numbers, Formal Charges, and Actual Partial Charges 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Applying the VSEPR Model to Determine Molecular Shapes Effect of Nonbonding Electrons and Multiple Bonds on Bond Angles Molecules with Expanded Valence Shells Shapes of Larger Molecules 9.2 The VSEPR Model Applying the VSEPR Model to Determine Molecular Shapes Effect of Nonbonding Electrons and Multiple Bonds on Bond Angles Molecules with Expanded Valence Shells Shapes of Larger Molecules 9.3 Molecular Shape and Molecular Polarity 9.4 Covalent Bonding and Orbital Overlap 9.5 Hybrid Orbitals sp Hybrid Orbitals sp2 and sp3 Hybrid Orbitals Hypervalent Molecules Hybrid Orbital Summary 9.6 Multiple Bonds Resonance Structures, Delocalization, and p Bonding General Conclusions about s and p 9.7 Molecular Orbitals Molecular Orbitals of the Hydrogen Molecule Bond Order 9.8 Bonding in Period 2 Diatomic Molecules Molecular Orbitals for Li2 and Be2 Molecular Orbitals from 2p Atomic Orbitals Electron Configurations for B2 through Ne2 Electron Configurations and Molecular Properties Heteronuclear Diatomic Molecules Chemistry and Life: The Chemistry of Vision A Closer Look: Phases in Atomic and Molecular Orbitals Chemistry Put To Work: Orbitals and Energy 10. Gases 10.1 Characteristics of Gases 10.2 Pressure Atmospheric Pressure and the Barometer 10.3 The Gas Laws The Pressure-Volume Relationship: Boyle's Law The Temperature-Volume Relationship: Charles's Law The Quantity-Volume Relationship: Avogadro's Law 10.4 The Ideal-Gas Equation Relating the Ideal-Gas Equation and the Gas Laws 10.5 Further Applications of the Ideal-Gas Equation Gas Densities and Molar Mass Volumes of Gases in Chemical Reactions 10.6 Gas Mixtures and Partial Pressures Partial Pressures and Mole Fractions 10.7 The Kinetic-Molecular Theory of Gases Distributions of Molecular Speed Application of Kinetic-Molecular Theory to the Gas Laws 10.8 Molecular Effusion and Diffusion Graham's Law of Effusion Diffusion and Mean Free Path 10.9 Real Gases: Deviations from Ideal Behavior The van der Waals Equation Strategies for Success: Calculations Involving Many Variables A Closer Look: The Ideal-Gas Equation Chemistry Put To Work: Gas Separations 11. Liquids and Intermolecular Forces 11.1 A Molecular Comparison of Gases, Liquids, and Solids 11.2 Intermolecular Forces Dispersion Forces Dipole-Dipole Interactions Hydrogen Bonding Ion-Dipole Forces Comparing Intermolecular Forces 11.3 Select Properties of Liquids Viscosity Surface Tension Capillary Action 11.4 Phase Changes Energy Changes Accompany Phase Changes Heating Curves Critical Temperature and Pressure 11.5 Vapor Pressure Volatility, Vapor Pressure, and Temperature Vapor Pressure and Boiling Point 11.6 Phase Diagrams The Phase Diagrams of and 11.7 Liquid Crystals Types of Liquid Crystals Chemistry Put To Work: Ionic Liquids A Closer Look: The Clausius-Clapeyron Equation 12. Solids and Modern Materials 12.1 Classification of Solids 12.2 Structures of Solids Crystalline and Amorphous Solids Unit Cells and Crystal Lattices Filling the Unit Cell 12.3 Metallic Solids The Structures of Metallic Solids Close Packing Alloys 12.4 Metallic Bonding Electron-Sea Model Molecular Orbital Model 12.5 Ionic Solids Structures of Ionic Solids 12.6 Molecular Solids 12.7 Covalent-Network Solids Semiconductors Semiconductor Doping 12.8 Polymers Making Polymers Structure and Physical Properties of Polymers 12.9 Nanomaterials Semiconductors on the Nanoscale Metals on the Nanoscale Carbon on the Nanoscale A Closer Look: X-ray Diffraction Chemistry Put To Work: Alloys of Gold Chemistry Put To Work: Solid-State Lighting Chemistry Put To Work: Modern Materials in the Automobile Chemistry Put To Work: Microporous and Mesoporous Materials 13. Properties of Solutions 13.1 The Solution Process The Natural Tendency toward Mixing The Effect of Intermolecular Forces on Solution Formation Energetics of Solution Formation Solution Formation and Chemical Reactions 13.2 Saturated Solutions and Solubility 13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects 13.4 Expressing Solution Concentration Mass Percentage, ppm, and ppb Mole Fraction, Molarity, and Molality Converting Concentration Units 13.5 Colligative Properties Vapor-Pressure Lowering Boiling-Point Elevation Freezing-Point Depression Osmosis Determination of Molar Mass from Colligative Properties 13.6 Colloids Hydrophilic and Hydrophobic Colloids Colloidal Motion in Liquids Chemistry and Life: Fat-Soluble and Water-Soluble Vitamins Chemistry and Life: Blood Gases and Deep-Sea Diving A Closer Look: Ideal Solutions with Two or More Volatile Components A Closer Look: The van't Hoff Factor Chemistry and Life: Sickle-Cell Anemia 14. Chemical Kinetics 14.1 Factors That Affect Reaction Rates 14.2 Reaction Rates Change of Rate with Time Instantaneous Rate Reaction Rates and Stoichiometry 14.3 Concentration and Rate Laws Reaction Orders: The Exponents in the Rate Law Magnitudes and Units of Rate Constants Using Initial Rates to Determine Rate Laws 14.4 The Change of Concentration with Time First-Order Reactions Second-Order Reactions Zero-Order Reactions Half-Life 14.5 Temperature and Rate The Collision Model The Orientation Factor Activation Energy The Arrhenius Equation Determining the Activation Energy 14.6 Reaction Mechanisms Elementary Reactions Multistep Mechanisms Rate Laws for Elementary Reactions The Rate-Determining Step for a Multistep Mechanism Mechanisms with a Slow Initial Step Mechanisms with a Fast Initial Step 14.7 Catalysis Homogeneous Catalysis Heterogeneous Catalysis Enzymes A Closer Look: Using Spectroscopic Methods to Measure Reaction Rates: Beer's Law Chemistry Put To Work: Methyl Bromide in the Atmosphere Chemistry Put To Work: Catalytic Converters Chemistry and Life: Nitrogen Fixation and Nitrogenase 15. Chemical Equilibrium 15.1 The Concept of Equilibrium 15.2 The Equilibrium Constant Evaluating Kc Equilibrium Constants in Terms of Pressure, Kp Equilibrium Constants and Units 15.3 Understanding and Working with Equilibrium Constants The Magnitude of Equilibrium Constants The Direction of the Chemical Equation and K Relating Chemical Equation Stoichiometry and Equilibrium Constants 15.4 Heterogeneous Equilibria 15.5 Calculating Equilibrium Constants 15.6 Applications of Equilibrium Constants Predicting the Direction of Reaction Calculating Equilibrium Concentrations 15.7 Le Chatelier's Principle Change in Reactant or Product Concentration Effects of Volume and Pressure Changes Effect of Temperature Changes The Effect of Catalysts Chemistry Put To Work: The Haber Process A Closer Look: Temperature Changes and Le Chatelier's Principle Chemistry Put To Work: Controlling Nitric Oxide Emissions 16. Acid-Base Equilibria 16.1 Arrhenius Acids and Bases 16.2 Bronsted-Lowry Acids and Bases The H+ Ion in Water Proton-Transfer Reactions Conjugate Acid-Base Pairs Relative Strengths of Acids and Bases 16.3 The Autoionization of Water The Ion Product of Water 16.4 The pH Scale pOH and Other "p" Scales Measuring pH 16.5 Strong Acids and Bases Strong Acids Strong Bases 16.6 Weak Acids Calculating Ka from pH Percent Ionization Using Ka to Calculate pH Polyprotic Acids 16.7 Weak Bases Types of Weak Bases 16.8 Relationship Between Ka and Kb 16.9 Acid-Base Properties of Salt Solutions An Anion's Ability to React with Water A Cation's Ability to React with Water Combined Effect of Cation and Anion in Solution 16.10 Acid-Base Behavior and Chemical Structure Factors That Affect Acid Strength Binary Acids Oxyacids Carboxylic Acids 16.11 Lewis Acids and Bases A Closer Look: Polyprotic Acids Chemistry Put To Work: Amines and Amine Hydrochlorides Chemistry and Life: The Amphiprotic Behavior of Amino Acids 17. Additional Aspects of Aqueous Equilibria 17.1 The Common-Ion Effect 17.2 Buffers Composition and Action of Buffers Calculating the pH of a Buffer Buffer Capacity and pH Range Addition of Strong Acids or Bases to Buffers 17.3 Acid-Base Titrations Strong Acid-Strong Base Titrations Weak Acid-Strong Base Titrations Titrating with an Acid-Base Indicator Titrations of Polyprotic Acids 17.4 Solubility Equilibria The Solubility-Product Constant, Ksp Solubility and Ksp 17.5 Factors That Affect Solubility The Common-Ion Effect Solubility and pH Formation of Complex Ions Amphoterism 17.6 Precipitation and Separation of Ions Selective Precipitation of Ions 17.7 Qualitative Analysis for Metallic Elements Chemistry and Life: Blood as a Buffered Solution A Closer Look: Limitations of Solubility Products Chemistry and Life: Tooth Decay and Fluoridation A Closer Look: Lead Contamination in Drinking Water 18. Chemistry of the Environment 18.1 Earth's Atmosphere Composition of the Atmosphere Photochemical Reactions in the Atmosphere Ozone in the Stratosphere 18.2 Human Activities and Earth's Atmosphere The Ozone Layer and Its Depletion Sulfur Compounds and Acid Rain Nitrogen Oxides and Photochemical Smog Greenhouse Gases: Water Vapor, Carbon Dioxide, and Climate 18.3 Earth's Water The Global Water Cycle Salt Water: Earth's Oceans and Seas Freshwater and Groundwater 18.4 Human Activities and Water Quality Dissolved Oxygen and Water Quality Water Purification: Desalination Water Purification: Municipal Treatment 18.5 Green Chemistry Supercritical Solvents Greener Reagents and Processes A Closer Look: Other Greenhouse Gases A Closer Look: The Ogallala Aquifer-A Shrinking Resource A Closer Look: Fracking and Water Quality Chemistry and Life: Ocean Acidification 19. Chemical Thermodynamics 19.1 Spontaneous Processes Seeking a Criterion for Spontaneity Reversible and Irreversible Processes 19.2 Entropy and the Second Law of Thermodynamics The Relationship between Entropy and Heat S for Phase Changes The Second Law of Thermodynamics 19.3 The Molecular Interpretation of Entropy and the Third Law of Thermodynamics Expansion of a Gas at the Molecular Level Boltzmann's Equation and Microstates Molecular Motions and Energy Making Qualitative Predictions about S The Third Law of Thermodynamics 19.4 Entropy Changes in Chemical Reactions Temperature Variation of Entropy Standard Molar Entropies Calculating the Standard Entropy Change for a Reaction Entropy Changes in the Surroundings 19.5 Gibbs Free Energy Standard Free Energy of Formation 19.6 Free Energy and Temperature 19.7 Free Energy and the Equilibrium Constant Free Energy under Nonstandard Conditions Relationship between G Degrees and K A Closer Look: The Entropy Change When a Gas Expands Isothermally Chemistry and Life: Entropy and Human Society A Closer Look: What's "Free" About Free Energy? Chemistry and Life: Driving Nonspontaneous Reactions: Coupling Reactions 20. Electrochemistry 20.1 Oxidation States and Oxidation-Reduction Reactions 20.2 Balancing Redox Equations Half-Reactions Balancing Equations by the Method of Half-Reactions Balancing Equations for Reactions Occurring in Basic Solution 20.3 Voltaic Cells 20.4 Cell Potentials Under Standard Conditions Standard Reduction Potentials Strengths of Oxidizing and Reducing Agents 20.5 Free Energy and Redox Reactions Emf, Free Energy, and the Equilibrium Constant 20.6 Cell Potentials Under Nonstandard Conditions The Nernst Equation Concentration Cells 20.7 Batteries and Fuel Cells Lead-Acid Battery Alkaline Battery Nickel-Cadmium and Nickel-Metal Hydride Batteries Lithium-Ion Batteries Hydrogen Fuel Cells 20.8 Corrosion Corrosion of Iron (Rusting) Preventing Corrosion of Iron 20.9 Electrolysis Quantitative Aspects of Electrolysis A Closer Look: Electrical Work Chemistry and Life: Heartbeats and Electrocardiography Chemistry Put To Work: Batteries for Hybrid and Electric Vehicles Chemistry Put To Work: Electrometallurgy of Aluminum 21. Nuclear Chemistry 21.1 Radioactivity and Nuclear Equations Nuclear Equations Types of Radioactive Decay 21.2 Patterns of Nuclear Stability Neutron-to-Proton Ratio Radioactive Decay Chains Further Observations 21.3 Nuclear Transmutations Accelerating Charged Particles Reactions Involving Neutrons Transuranium Elements 21.4 Rates of Radioactive Decay Radiometric Dating Calculations Based on Half-Life 21.5 Detection of Radioactivity Radiotracers 21.6 Energy Changes in Nuclear Reactions Nuclear Binding Energies 21.7 Nuclear Power: Fission Nuclear Reactors Nuclear Waste 21.8 Nuclear Power: Fusion 21.9 Radiation in the Environment and Living Systems Radiation Doses Chemistry and Life: Medical Applications of Radiotracers A Closer Look: The Dawning of the Nuclear Age A Closer Look: Nuclear Synthesis of the Elements Chemistry and Life: Radiation Therapy 22. Chemistry of the Nonmetals 22.1 Periodic Trends and Chemical Reactions Chemical Reactions 22.2 Hydrogen Isotopes of Hydrogen Properties of Hydrogen Production of Hydrogen Uses of Hydrogen Binary Hydrogen Compounds 22.3 Group 8A: The Noble Gases Noble-Gas Compounds 22.4 Group 7A: The Halogens Properties and Production of the Halogens Uses of the Halogens The Hydrogen Halides Interhalogen Compounds Oxyacids and Oxyanions 22.5 Oxygen Properties of Oxygen Production of Oxygen Uses of Oxygen Ozone Oxides Peroxides and Superoxides 22.6 The Other Group 6A Elements: S, Se, Te, and Po Occurrence and Production of S, Se, and Te Properties and Uses of Sulfur, Selenium, and Tellurium Sulfides Oxides, Oxyacids, and Oxyanions of Sulfur 22.7 Nitrogen Properties of Nitrogen Production and Uses of Nitrogen Hydrogen Compounds of Nitrogen Oxides and Oxyacids of Nitrogen 22.8 The Other Group 5A Elements: P, As, Sb, and Bi Occurrence, Isolation, and Properties of Phosphorus Phosphorus Halides Oxy Compounds of Phosphorus 22.9 Carbon Elemental Forms of Carbon Oxides of Carbon Carbonic Acid and Carbonates Carbides 22.10 The Other Group 4A Elements: Si, Ge, Sn, and Pb General Characteristics of the Group A Elements Occurrence and Preparation of Silicon Silicates Glass Silicones 22.11 Boron A Closer Look: The Hydrogen Economy Chemistry and Life: Nitroglycerin, Nitric Oxide, and Heart Disease Chemistry and Life: Arsenic in Drinking Water Chemistry Put To Work: Carbon Fibers and Composites 23. Transition Metals and Coordination Chemistry 23.1 The Transition Metals Physical Properties Electron Configurations and Oxidation States Magnetism 23.2 Transition-Metal Complexes The Development of Coordination Chemistry: Werner's Theory The Metal-Ligand Bond Charges, Coordination Numbers, and Geometries 23.3 Common Ligands in Coordination Chemistry Metals and Chelates in Living Systems 23.4 Nomenclature and Isomerism in Coordination Chemistry Isomerism Structural Isomerism Stereoisomerism 23.5 Color and Magnetism in Coordination Chemistry Color Magnetism of Coordination Compounds 23.6 Crystal-field Theory Electron Configurations in Octahedral Complexes Tetrahedral and Square-Planar Complexes Design an Experiment A Closer Look: Entropy and the Chelate Effect Chemistry and Life: The Battle for Iron in Living Systems A Closer Look: Charge-Transfer Color 24. The Chemistry of Life: Organic and Biological Chemistry 24.1 General Characteristics of Organic Molecules The Structures of Organic Molecules The Stability of Organic Compounds Solubility and Acid-Base Properties of Organic Compounds 24.2 Introduction to Hydrocarbons Structures of Alkanes Structural Isomers Nomenclature of Alkanes Cycloalkanes Reactions of Alkanes 24.3 Alkenes, Alkynes, and Aromatic Hydrocarbons Alkenes Alkynes Addition Reactions of Alkenes and Alkynes Aromatic Hydrocarbons Stabilization of p Electrons by Delocalization Substitution Reactions of Aromatic Hydrocarbons 24.4 Organic Functional Groups Alcohols Ethers Aldehydes and Ketones Carboxylic Acids and Esters Amines and Amides 24.5 Chirality in Organic Chemistry 24.6 Introduction to Biochemistry 24.7 Proteins Amino Acids Polypeptides and Proteins Protein Structure 24.8 Carbohydrates Disaccharides Polysaccharides 24.9 Lipids Fats Phospholipids 24.10 Nucleic Acids Design an Experiment Chemistry Put To Work: Gasoline A Closer Look: Mechanism of Addition Reactions STRATEGIES FOR SUCCESS: What Now? Appendices Mathematical Operations Properties of Water Thermodynamic Quantities for Selected Substances at 298.15 K (25 DegreesC) Aqueous Equilibrium Constants Standard Reduction Potentials at 25 DegreesC Answers to Selected Exercises Answers to Give It Some Thought Answers to Go Figure Answer to Selected Practice Exercises Glossary

「Nielsen BookData」 より

詳細情報

  • NII書誌ID(NCID)
    BB22965012
  • ISBN
    • 9780134414232
  • LCCN
    2016046345
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    New York
  • ページ数/冊数
    xxxii, 1094, 50, 18, 3, 35 p.
  • 大きさ
    29 cm
  • 分類
  • 件名
ページトップへ