Infinite length modules
Author(s)
Bibliographic Information
Infinite length modules
(Trends in mathematics)
Springer Basel AG, c2000
- pbk
Available at / 1 libraries
-
No Libraries matched.
- Remove all filters.
Note
"Originally published by Birkhäuser Verlag, Basel in 2000" -- T.p. verso
Includes bibliographical references
Description and Table of Contents
Description
This book is concerned with the role played by modules of infinite length when dealing with problems in the representation theory of groups and algebras, but also in topology and geometry; it shows the intriguing interplay between finite and infinite length modules.
Table of Contents
Infinite length modules. Some Examples as Introduction.- Modules with strange decomposition properties.- Failure of the Krull-Schmidt theorem for artinian modules and serial modules.- Artinian modules over a matrix ring.- Some combinatorial principles for solving algebraic problems.- Dimension theory of noetherian rings.- Krull, Gelfand-Kirillov, Filter, Faithful and Schur dimensions.- Cohen-Macaulay modules and approximations.- The generic representation theory of finite fields A survey of basic structures.- On artinian objects in the category of functors between
$${<!-- -->{\mathbb{F}}_{2}}
$$
-vector spaces.- Unstable modules over the Steenrod algebra, functors, and the cohomology of spaces.- Infinite dimensional modules for finite groups.- Bousfield localization for representation theoretists.- The thick subcategory generated by the trivial module.- Birational classification of moduli spaces.- Tame algebras and degenerations of modules.- On some tame and discrete families of modules.- Purity, algebraic compactness, direct sum decompositions, and representation type.- Topological and geometrical aspects of the Ziegler spectrum.- Finite versus infinite dimensional representations A new definition of tameness.- Invariance of tameness under stable equivalence:Krause's theorem.- The Krull-Gabriel dimension of an algebra Open problems and conjectures.- Homological differences between finite and infinite dimensional representations of algebras.
by "Nielsen BookData"