Optimization : algorithms and applications
著者
書誌事項
Optimization : algorithms and applications
(A Chapman & Hall book)
CRC Press, c2015
- : hardback
大学図書館所蔵 件 / 全1件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 299-308) and index
内容説明・目次
内容説明
Choose the Correct Solution Method for Your Optimization Problem
Optimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs.
The book covers both gradient and stochastic methods as solution techniques for unconstrained and constrained optimization problems. It discusses the conjugate gradient method, Broyden-Fletcher-Goldfarb-Shanno algorithm, Powell method, penalty function, augmented Lagrange multiplier method, sequential quadratic programming, method of feasible directions, genetic algorithms, particle swarm optimization (PSO), simulated annealing, ant colony optimization, and tabu search methods. The author shows how to solve non-convex multi-objective optimization problems using simple modifications of the basic PSO code. The book also introduces multidisciplinary design optimization (MDO) architectures-one of the first optimization books to do so-and develops software codes for the simplex method and affine-scaling interior point method for solving linear programming problems. In addition, it examines Gomory's cutting plane method, the branch-and-bound method, and Balas' algorithm for integer programming problems.
The author follows a step-by-step approach to developing the MATLAB (R) codes from the algorithms. He then applies the codes to solve both standard functions taken from the literature and real-world applications, including a complex trajectory design problem of a robot, a portfolio optimization problem, and a multi-objective shape optimization problem of a reentry body. This hands-on approach improves your understanding and confidence in handling different solution methods. The MATLAB codes are available on the book's CRC Press web page.
目次
Introduction. 1-D Optimization Algorithms. Unconstrained Optimization. Linear Programming. Guided Random Search Methods. Constrained Optimization. Multiobjective Optimization. Geometric Programming. Multidisciplinary Design Optimization. Integer Programming. Dynamic Programming. Bibliography. Appendices. Index.
「Nielsen BookData」 より