Hydrodynamics of time-periodic groundwater flow : diffusion waves in porous media

Author(s)
    • Depner, Joe S.
    • Rasmussen, T. C. (Todd C.)
Bibliographic Information

Hydrodynamics of time-periodic groundwater flow : diffusion waves in porous media

Joe S. Depner, Todd C. Rasmussen

(Geophysical monograph, 224)

Wiley, c2017

Search this Book/Journal
Note

"This Work is a co-publication between the American Geophysical Union and John Wiley and Sons, Inc."

Includes bibliographical references and index

Description and Table of Contents

Description

Hydrodynamics of Time-Periodic Groundwater Flow introduces the emerging topic of periodic fluctuations in groundwater. While classical hydrology has often focused on steady flow conditions, many systems display periodic behavior due to tidal, seasonal, annual, and human influences. Describing and quantifying subsurface hydraulic responses to these influences may be challenging to those who are unfamiliar with periodically forced groundwater systems. The goal of this volume is to present a clear and accessible mathematical introduction to the basic and advanced theory of time-periodic groundwater flow, which is essential for developing a comprehensive knowledge of groundwater hydraulics and groundwater hydrology. Volume highlights include: Overview of time-periodic forcing of groundwater systems Definition of the Boundary Value Problem for harmonic systems in space and time Examples of 1-, 2-, and 3-dimensional flow in various media Attenuation, delay, and gradients, stationary points and flow stagnation Wave propagation and energy transport Hydrodynamics of Time-Periodic Groundwater Flow presents numerous examples and exercises to reinforce the essential elements of the theoretical development, and thus is eminently well suited for self-directed study by undergraduate and graduate students. This volume will be a valuable resource for professionals in Earth and environmental sciences who develop groundwater models., including in the fields of groundwater hydrology, soil physics, hydrogeology, geoscience, geophysics, and geochemistry. Time-periodic phenomena are also encountered in fields other than groundwater flow, such as electronics, heat transport, and chemical diffusion. Thus, students and professionals in the field of chemistry, electronic engineering, and physics will also find this book useful. Read an interview with the editors to find out more: https://eos.org/editors-vox/a-foundation-for-modeling-time-periodic-groundwater-flow

Table of Contents

Preface vii Notation xi Acknowledgments xvii Part I: Introduction 1 1 Introduction 3 Part II: Problem Definition 7 2 Initial Boundary Value Problem for Hydraulic Head 9 3 Hydraulic Head Components and Their IBVPs 13 4 Periodic Transient Components 15 5 BVP for Harmonic Constituents 21 6 Polar Form of Space BVP 29 7 Complex-Variable Form of Space BVP 37 8 Comparison of Space BVP Forms 43 Part III: Elementary Examples 45 9 Examples: 1D Flow in Ideal Media 47 10 Examples: 1D Flow in Exponential Media 63 11 Examples: 1D Flow in Power Law Media 89 12 Examples: 2D and 3D Flow in Ideal Media 95 13 Examples: Uniform-Gradient Flow 107 Part IV: Essential Concepts 121 14 Attenuation, Delay, and Gradient Collinearity 123 15 Time Variation of Specific-Discharge Constituent 131 Part V: Stationary Points 149 16 Stationary Points: Basic Concepts 151 17 Stationary Points: Amplitude and Phase 157 18 Flow Stagnation 171 Part VI: Wave Propagation 181 19 Harmonic, Hydraulic Head Waves 183 20 Wave Distortion 199 21 Waves in One Dimension 215 22 Wave Equation 225 Part VII: Energy Transport 231 23 Mechanical Energy of Groundwater 233 24 Mechanical Energy: Time Averages 239 25 Mechanical Energy of Single-Constituent Fields 249 Part VIII: Conclusion 261 26 Conclusion 263 Part IX: Appendices 269 A Hydraulic Head Components 271 B Useful Results from Trigonometry 273 C Linear Transformation of Space Coordinates 275 D Complex Variables 281 E Kelvin Functions 283 Bibliography 291 Index 295

by "Nielsen BookData"

Related Books: 1-1 of 1
Details
Page Top