Hydrodynamics of time-periodic groundwater flow : diffusion waves in porous media
Author(s)
Bibliographic Information
Hydrodynamics of time-periodic groundwater flow : diffusion waves in porous media
(Geophysical monograph, 224)
Wiley, c2017
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"This Work is a co-publication between the American Geophysical Union and John Wiley and Sons, Inc."
Includes bibliographical references and index
Description and Table of Contents
Description
Hydrodynamics of Time-Periodic Groundwater Flow introduces the emerging topic of periodic fluctuations in groundwater. While classical hydrology has often focused on steady flow conditions, many systems display periodic behavior due to tidal, seasonal, annual, and human influences. Describing and quantifying subsurface hydraulic responses to these influences may be challenging to those who are unfamiliar with periodically forced groundwater systems. The goal of this volume is to present a clear and accessible mathematical introduction to the basic and advanced theory of time-periodic groundwater flow, which is essential for developing a comprehensive knowledge of groundwater hydraulics and groundwater hydrology.
Volume highlights include:
Overview of time-periodic forcing of groundwater systems
Definition of the Boundary Value Problem for harmonic systems in space and time
Examples of 1-, 2-, and 3-dimensional flow in various media
Attenuation, delay, and gradients, stationary points and flow stagnation
Wave propagation and energy transport
Hydrodynamics of Time-Periodic Groundwater Flow presents numerous examples and exercises to reinforce the essential elements of the theoretical development, and thus is eminently well suited for self-directed study by undergraduate and graduate students. This volume will be a valuable resource for professionals in Earth and environmental sciences who develop groundwater models., including in the fields of groundwater hydrology, soil physics, hydrogeology, geoscience, geophysics, and geochemistry. Time-periodic phenomena are also encountered in fields other than groundwater flow, such as electronics, heat transport, and chemical diffusion. Thus, students and professionals in the field of chemistry, electronic engineering, and physics will also find this book useful.
Read an interview with the editors to find out more:
https://eos.org/editors-vox/a-foundation-for-modeling-time-periodic-groundwater-flow
Table of Contents
Preface vii
Notation xi
Acknowledgments xvii
Part I: Introduction 1
1 Introduction 3
Part II: Problem Definition 7
2 Initial Boundary Value Problem for Hydraulic Head 9
3 Hydraulic Head Components and Their IBVPs 13
4 Periodic Transient Components 15
5 BVP for Harmonic Constituents 21
6 Polar Form of Space BVP 29
7 Complex-Variable Form of Space BVP 37
8 Comparison of Space BVP Forms 43
Part III: Elementary Examples 45
9 Examples: 1D Flow in Ideal Media 47
10 Examples: 1D Flow in Exponential Media 63
11 Examples: 1D Flow in Power Law Media 89
12 Examples: 2D and 3D Flow in Ideal Media 95
13 Examples: Uniform-Gradient Flow 107
Part IV: Essential Concepts 121
14 Attenuation, Delay, and Gradient Collinearity 123
15 Time Variation of Specific-Discharge Constituent 131
Part V: Stationary Points 149
16 Stationary Points: Basic Concepts 151
17 Stationary Points: Amplitude and Phase 157
18 Flow Stagnation 171
Part VI: Wave Propagation 181
19 Harmonic, Hydraulic Head Waves 183
20 Wave Distortion 199
21 Waves in One Dimension 215
22 Wave Equation 225
Part VII: Energy Transport 231
23 Mechanical Energy of Groundwater 233
24 Mechanical Energy: Time Averages 239
25 Mechanical Energy of Single-Constituent Fields 249
Part VIII: Conclusion 261
26 Conclusion 263
Part IX: Appendices 269
A Hydraulic Head Components 271
B Useful Results from Trigonometry 273
C Linear Transformation of Space Coordinates 275
D Complex Variables 281
E Kelvin Functions 283
Bibliography 291
Index 295
by "Nielsen BookData"