Interpreting Gödel : critical essays
著者
書誌事項
Interpreting Gödel : critical essays
Cambridge University Press, 2016
- : paperback
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
Bibliography: p. 256-276
"First paperback edition 2016" -- T.p. verso
内容説明・目次
内容説明
The logician Kurt Goedel (1906-1978) published a paper in 1931 formulating what have come to be known as his 'incompleteness theorems', which prove, among other things, that within any formal system with resources sufficient to code arithmetic, questions exist which are neither provable nor disprovable on the basis of the axioms which define the system. These are among the most celebrated results in logic today. In this volume, leading philosophers and mathematicians assess important aspects of Goedel's work on the foundations and philosophy of mathematics. Their essays explore almost every aspect of Godel's intellectual legacy including his concepts of intuition and analyticity, the Completeness Theorem, the set-theoretic multiverse, and the state of mathematical logic today. This groundbreaking volume will be invaluable to students, historians, logicians and philosophers of mathematics who wish to understand the current thinking on these issues.
目次
- 1. Introduction: Goedel and analytic philosophy: how did we get here? Juliette Kennedy
- Part I. Goedel on Intuition: 2. Intuitions of three kinds in Goedel's views on the continuum John Burgess
- 3. Goedel on how to have your mathematics and know it too Janet Folina
- Part II. The Completeness Theorem: 4. Completeness and the ends of axiomatization Michael Detlefsen
- 5. Logical completeness, form, and content: an archaeology Curtis Franks
- Part III. Computability and Analyticity: 6. Goedel's 1946 Princeton bicentennial lecture: an appreciation Juliette Kennedy
- 7. Analyticity for realists Charles Parsons
- Part IV. The Set-Theoretic Multiverse: 8. Goedel's program John Steel
- 9. Multiverse set theory and absolutely undecidable propositions Jouko Vaananen
- Part V. The Legacy: 10. Undecidable problems: a sampler Bjorn Poonen
- 11. Reflecting on logical dreams Saharon Shelah.
「Nielsen BookData」 より