書誌事項

Micro- and nanophotonic technologies

edited by Patrick Meyrueis, Kazuaki Sakoda, Marcel Van de Voorde

(Nanotechnology innovation & applications)

Wiley-VCH, c2017

大学図書館所蔵 件 / 4

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Edited and authored by leading experts from top institutions in Europe, the US and Asia, this comprehensive overview of micro- and nanophotonics covers the physical and chemical fundamentals, while clearly focusing on the technologies and applications in industrial R&D. As such, the book reports on the four main areas of telecommunications and display technologies; light conversion and energy generation; light-based fabrication of materials; and micro- and nanophotonic devices in metrology and control.

目次

  • Foreword XXIII Preface XXV An Overview of Micro- and Nanophotonic Science and Technology XXVII Part One From Research to Application 1 1 Nanophotonics: From Fundamental Research to Applications 3 Francois Flory, Ludovic Escoubas, Judikael Le Rouzo, and Gerard Berginc 1.1 Introduction 3 1.2 Application of Photonic Crystals to Solar Cells 5 1.3 Antireflecting Periodic Structures 8 1.4 Black Silicon 10 1.5 Metamaterials for Wide-Band Filtering 14 1.6 Rough Surfaces with Controlled Statistics 16 1.7 Enhancement of Absorption in Organic Solar Cells with Plasmonic Nano Particles 19 1.8 Quantum Dot Solar Cells 20 1.9 Conclusions 24 Acknowledgments 24 References 24 2 Photonic Crystal and Plasmonic Microcavities 29 Kazuaki Sakoda 2.1 Introduction 29 2.2 Photonic Crystal Microcavity 32 2.3 Purcell Effect 38 2.3.1 Purcell Factor 38 2.3.2 GaAs Quantum Dots in PC Microcavity 39 2.4 Plasmonic Microcavity 41 2.4.1 Enhanced MD Radiation 42 2.4.2 Enhanced ED Radiation 46 2.4.3 Multimode Cavity 47 References 50 3 Unconventional Thermal Emission from Photonic Crystals 51 Hideki T. Miyazaki 3.1 Introduction 51 3.2 3D Photonic Crystals 52 3.3 2D Photonic Crystals 57 3.4 1D Photonic Crystals 60 3.5 Summary 61 References 61 4 Extremely Small Bending Loss of Organic Polaritonic Fibers 65 Ken Takazawa, Hiroyuki Takeda, and Kazuaki Sakoda 4.1 Introduction 65 4.2 Exciton-Polariton Waveguiding in TC Nanofibers 66 4.2.1 Synthesis and Characterization of TC Nanofibers 66 4.2.2 Mechanism of Active Waveguiding in TC Nanofibers 67 4.3 Miniaturized Photonic Circuit Components Constructed from TC Nanofibers 69 4.3.1 Asymmetric Mach-Zehnder Interferometers 69 4.3.2 Microring Resonators 71 4.3.3 Microring Resonator Channel Drop Filters 74 4.4 Theoretical Analysis 76 4.4.1 Dispersion Relation 76 4.4.2 Bending Loss 78 References 80 5 Plasmon Color Filters and Phase Controllers 81 Yoshimasa Sugimoto, Daisuke Inoue, and Takayuki Matsui 5.1 Introduction 81 5.2 Optical Filter Based on Surface Plasmon Resonance 82 5.2.1 Light Transmission through Hole and Slit Arrays 83 5.2.1.1 Hole Arrays 83 5.2.1.2 Nanoslit Arrays 85 5.2.2 Fabrication and Measurement 87 5.2.3 Transmission Characteristics 89 5.2.3.1 Hole Arrays 89 5.2.3.2 Nanoslit Arrays 91 5.3 Transmission Phase Control by Stacked Metal-Dielectric Hole Array 92 5.3.1 Verification of Transmission Phase Control by a Uniform SHA 93 5.3.2 Numerical Study of Transition SHA for Inclined Wavefront Formation 95 5.3.3 Experimental Confirmation of Uniform SHA 95 5.3.4 Experimental Confirmation of Transition SHA 97 5.4 Summary 99 References 100 6 Entangled Photon Pair Generation in Naturally Symmetric Quantum Dots Grown by Droplet Epitaxy 103 Takashi Kuroda 6.1 Introduction 103 6.2 Quantum Dot Photon-pair Source 105 6.3 Natural Growth of Symmetric Quantum Dots 108 6.4 Droplet Epitaxy of GaAs Quantum Dots on AlGaAs(1 1 1)A 109 6.5 Characterization of Entanglement 112 6.6 Violation of Bell's Inequality 115 6.7 Quantum-state Tomography and Other Entanglement Measures 118 References 121 7 Single-Photon Generation from Nitrogen Isoelectronic Traps in III-V Semiconductors 125 Yoshiki Sakuma, Michio Ikezawa, and Liao Zhang 7.1 Introduction 125 7.2 What is Isoelectronic Trap? 126 7.3 GaP:N Case 127 7.3.1 Macro-PL from Bulk GaP:N 127 7.3.2 -PL of NN Pairs in -Doped GaP:N 127 7.3.3 Single-Photon Emission from -Doped GaP:N 130 7.4 GaAs:N Case 131 7.4.1 Overview of Isoelectronic Traps in GaAs 131 7.4.2 NX Centers in -Doped GaAs:N 132 7.4.2.1 Growth Conditions and Macro-PL 132 7.4.2.2 -PL of NX Centers and Single-Photon Emission 132 7.4.3 Energy-Defined N-Related Centers in -Doped GaAs:N 134 7.4.3.1 Growth Conditions and Macro-PL 134 7.4.3.2 -PL of NNA and Single-Photon Emission 135 7.5 Summary 138 References 138 8 Parity-Time Symmetry in Free Space Optics 143 Bernard Kress, PhD and Mykola Kulishov, PhD 8.1 Parity-Time Symmetry in Diffractive Optics 143 8.1.1 Spectral, Angular, and Polarization Selectivity 143 8.1.2 Time Multiplexing: Dynamic Gratings and Holograms 144 8.1.3 From Conventional Amplitude/Phase Modulations to Phase/Gain/Loss Modulations 145 8.1.4 Implementation of Parity-Time Symmetry in Optics 145 8.1.4.1 Thick and Thin Gratings 147 8.2 Free Space Diffraction on Active Gratings with Balanced Phase and Gain/Loss Modulations 148 8.2.1 Raman-Nath PT-Symmetric Diffraction 148 8.2.1.1 Raman-Nath Diffraction Regime 150 8.2.1.2 Intermediate and Bragg Diffraction Regimes 151 8.2.1.3 Summary 155 8.3 PT-Symmetric Volume Holograms in Transmission Mode 156 8.3.1 Second-Order Coupled Mode Equations 157 8.3.2 Two-Mode Solution for B 160 8.3.3 Analytic Solution for Balanced PT-Symmetric Grating for Arbitrary Angle of Incidence 162 8.3.4 Filled Space PT-Symmetric Grating 166 8.3.5 Symmetric Slab Configuration 167 8.3.6 Asymmetric Slab Configurations 168 8.3.6.1 Light Incident from the Substrate Side: 3 =1 168 8.3.6.2 Light Incident from the Air: 1 =1 170 8.3.6.3 Reflective Setup 170 8.3.7 Discussion 171 8.4 Analysis of Unidirectional Nonparaxial Invisibility of Purely Reflective PT-Symmetric Volume Gratings 174 8.4.1 Introduction 174 8.4.2 Analytic Solution for First Three Bragg Orders for a Balanced PT-Symmetric Grating 174 8.4.3 Zeroth Diffractive Orders in Transmission and Reflection 177 8.4.4 Higher Diffractive Orders 178 8.4.4.1 First Diffraction Orders 178 8.4.4.2 Second Diffraction Orders 179 8.4.5 Filled Space PT-Symmetric Gratings 180 8.4.5.1 Filled Space PT-Symmetric Grating Implies 1 2 3 180 8.4.6 Reflective PT-Symmetric Gratings with Fresnel Reflections 185 8.4.6.1 Symmetric Geometry 1 3 1
  • 2 2:4 185 8.4.6.2 Asymmetric Slab Configuration 186 8.5 Summary and Conclusions 189 References 191 9 Parity-Time Symmetric Cavities: Intrinsically Single-Mode Lasing 193 Mykola Kulishov and Bernard Kress 9.1 Introduction 193 9.2 Resonant Cavities Based on two PT-Symmetric Diffractive Gratings 194 9.2.1 PT-Symmetric Bragg Grating 194 9.2.2 Concatenation of Two Gratings 195 9.2.3 Temporal Characteristics 202 9.2.4 Summary 204 9.3 Distributed Bragg Reflector Structures Based on PT-Symmetric Coupling with Lowest Possible Lasing Threshold 204 9.3.1 Grating-Assisted Codirectional Coupler with PT Symmetry 205 9.3.2 Threshold Condition in DBR Lasers 208 9.3.3 DBR Lasers with PT-Symmetrical GACC Output 209 9.3.4 Transfer Matrix Description of the DBR Structure with PT-Symmetrical GACC Output 210 9.4 Unique Optical Characteristics of a Fabry-Perot Resonator with Embedded PT-Symmetrical Grating 215 9.4.1 Transfer Matrix for Fabry-Perot Cavity with a Single PT-SBG 216 9.4.2 Absorption and Amplification Modes along with Lasing Characteristics 220 9.4.2.1 Fully Constructive Cavity Interaction 220 9.4.2.2 Partially Constructive Cavity Interaction 223 9.4.2.3 Partially Destructive Cavity Interaction 228 9.4.2.4 Fully Destructive Cavity Interaction 230 9.5 Summary and Conclusions 230 References 231 10 Silicon Quantum Dot Composites for Nanophotonics 233 Hiroshi Sugimoto and Minoru Fujii 10.1 Introduction 233 10.2 Core-Shell Type Nanocomposites 234 10.3 Polymer Encapsulation 239 10.4 Micelle Encapsulation 241 10.5 Summary 243 Acknowledgments 243 References 243 Part Two Breakthrough Applications 247 11 Ultrathin Polarizers and Waveplates Made of Metamaterials 249 Masanobu Iwanaga 11.1 Concept and Practice of Subwavelength Optical Devices 249 11.1.1 Conceptual Classification of Polarization-Controlling Optical Devices 249 11.1.2 Construction of Optical Devices Using Jones Matrices 250 11.1.3 UV NIL 252 11.2 Ultrathin Polarizers 254 11.3 Ultrathin Waveplates 258 11.3.1 Ultrathin Waveplates Made of Stratified Metal-Dielectric MMs 259 11.3.2 Ultrathin Waveplates of Other Structures 262 11.4 Constructions of Functional Subwavelength Devices 264 11.5 Summary and Prospects 267 Acknowledgments 267 References 267 12 Nanoimprint Lithography for the Fabrication of Metallic Metasurfaces 269 Yoshimasa Sugimoto, Masanobu Iwanaga, and Hideki T. Miyazaki 12.1 Introduction 269 12.2 UV-NIL 270 12.3 Large-Area SP-RGB Color Filter Using UV-NIL 273 12.3.1 Introduction 273 12.3.2 Device Design 274 12.3.3 Device Fabrication and Transmission Characteristics 275 12.4 Emission-Enhanced Plasmonic Metasurfaces Fabricated by NIL 278 12.4.1 Introduction 278 12.4.2 SC-PlC Structure 279 12.4.3 Fabrication and Optical Characterization of SC-PlC 279 12.5 Metasurface Thermal Emitters for Infrared CO2 Detection by UV-NIL 282 12.5.1 Introduction 282 12.5.2 Metasurface Design 282 12.5.3 Device Fabrication and Optical Properties 283 12.6 Summary 285 References 287 13 Applications to Optical Communication 291 Philippe Gallion 13.1 Introduction 291 13.2 Optical Fiber and Propagation Impairments 294 13.2.1 Guiding Necessity 294 13.2.2 Multimode and Single-Mode Fibers 295 13.2.3 Rayleigh Diffusion as the Limiting Factor for Optical Fiber Attenuation 297 13.2.4 A Huge Available Bandwidth Resource 298 13.2.5 dispersions as the bit-rate limitations 299 13.2.5.1 Group Velocity Dispersion 299 13.2.5.2 Polarization Mode Dispersion 299 13.2.5.3 bit-rate limitations 301 13.2.5.4 Overcoming the Dispersion Limitations 302 13.2.6 Fiber Nonlinearity 302 13.2.7 New Fiber Materials and Structures 304 13.3 Basics of Functional Devices 305 13.3.1 Optical Sources 305 13.3.1.1 Light Emission in Semiconductor 305 13.3.1.2 Semiconductor Laser Single-Mode Operation 306 13.3.1.3 Interband Dynamics as Direct Modulation Limitation 308 13.3.1.4 Optical Frequency Chirping 308 13.3.1.5 Optical Frequency Tuning 309 13.3.1.6 Quantum Phase Diffusion and Linewidth 309 13.3.2 External Modulation 310 13.3.2.1 Electroabsorption Modulation 310 13.3.2.2 Electro-Optic Modulation 310 13.3.3 Optical Amplification 311 13.3.3.1 Needs of Optical Amplification 311 13.3.3.2 Today's Optical Amplifier Technologies 311 13.3.3.3 Heisenberg Indetermination and Quantum Noise 312 13.3.3.4 Spontaneous Emission Noise Description 313 13.3.3.5 Optical Amplifier Noise Figure 313 13.3.3.6 Noise in Cascaded Amplifications 313 13.3.4 Interfacing the Optical and the Electronics Domains 314 13.3.5 Module Packaging 314 13.4 Advanced Optical Communication Techniques 315 13.4.1 Managing the Color and Wavelength Division Multiplexing 315 13.4.2 Coherent Optical Communication 316 13.4.2.1 Coherent Optical Receiver 316 13.4.2.2 Quadrature Amplitude Modulations 317 13.4.3 Digital Communication and Signal Processing Techniques 318 13.5 Today's Optical Communication Systems 319 13.5.1 The Conquest of Submarine and Terrestrial Communication Infrastructures 319 13.5.2 Optical Fiber at Our Door 320 13.5.2.1 The Last-Mile Problem 320 13.5.2.2 Optical Connection to the End Users 320 13.5.3 Optical Wireless and Free Space Communications 322 13.5.4 Quantum Cryptography 322 13.6 Conclusions: Today's Challenges and Perspectives 323 Acknowledgments 326 List of Acronyms and Abbreviations 326 References 328 14 Advanced Concepts for Solar Energy 333 Mikael Hosatte 14.1 Introduction 333 14.2 Photon Management 334 14.2.1 Antireflection Techniques 334 14.2.2 Light Trapping 337 14.3 Spectral Optimization 339 14.3.1 Upconversion/Downconversion 339 14.3.2 Tandem Cells 340 14.4 Advanced Concepts 343 14.4.1 Third-Generation Concepts 343 14.4.2 Multiple Energy Level Solar Cells 344 14.4.3 Multiple Exciton Generation 345 14.4.4 Hot Carrier Solar Cells 348 14.4.5 Comparison of the Approaches 349 14.5 Conclusions 349 References 350 15 The Micro- and Nanoinvestigation and Control of Physical Processes Using Optical Fiber Sensors and Numerical Simulations: a Mathematical Approach 355 Adrian Neculae and Dan Curticapean 15.1 Introduction 355 15.2 Temperature Measurement and Heat Transfer Evaluation in a Circular Cylinder by Considering a High Accurate Numerical Solution 360 15.2.1 Theoretical Background 361 15.2.2 Numerical Results for Conductive Transport 366 15.2.3 The SP1 Approximation Model 370 15.2.4 Numerical Results for the SP1 Model 370 15.3 Numerical Analysis of the Diffusive Mass Transport in Brain Tissues with Applications to Optical Sensors 372 15.3.1 Theoretical Background 373 15.3.2 Numerical Results 375 Acknowledgment 380 References 380 16 Laser Micronanofabrication 383 Sylvain Lecler, Joel J. Fontaine, and Frederic Mermet 16.1 Introduction 383 16.2 Physical Issues 384 16.2.1 The Laser Mean Power 385 16.2.2 The Wavelength 385 16.2.3 Pulse Duration and Repetition Rate 385 16.2.4 Spatial Concentration and Beam Shaping 385 16.2.5 Material Response 386 16.3 Recent Technological Advances 387 16.3.1 Femtosecond Laser 387 16.3.2 Nondivergent Subwavelength Beams 388 16.3.3 Subwavelength Focusing of Light with Photonic Nanojet 389 16.3.4 Subwavelength Deposition by LIFT Technique 389 16.4 Laser Microprocesses 392 16.4.1 Material Deposition and Thin-Layer Control 392 16.4.2 Nanoparticle Fabrication 392 16.4.3 Microdrilling 393 16.4.4 Microcutting 393 16.4.5 Laser Microwelding 395 16.4.6 Surface Texturing 396 16.4.7 Additive Manufacturing 397 16.4.8 Waveguide Writing 399 16.5 Conclusions 399 References 400 17 Ultrarealistic Imaging Based on Nanoparticle Recording Materials 403 Hans I. Bjelkhagen 17.1 Introduction 403 17.1.1 Demands on a Holographic Emulsion 404 17.1.2 Silver Halide Emulsion Light Scattering 405 17.1.3 History of Ultrafine-grain Silver Halide Emulsions 406 17.2 Preperation of Silver Hailde Emulsions: Principle 407 17.2.1 General Description of the Photographic Emulsion Making Process 407 17.2.2 The Specification for the SilverCross Ultrafine-grain Emulsion 408 17.2.3 The Fabrication of a Basic Ultrafine-Grain Emulsion 409 17.2.3.1 Gelatin Concentration 410 17.2.3.2 Silver and Halide Concentrations 410 17.2.3.3 Silver to Halide Ratio 410 17.2.3.4 Jetting Methods and Jetting Time 410 17.2.3.5 Solution Temperatures 411 17.2.3.6 Concentration and Removal of Reaction By-products 411 17.2.3.7 Coating 412 17.3 Testing of the Emulsion 413 17.3.1 Sensitometric Tests 413 17.3.2 Color Holography Tests 414 17.4 Recording Museum Artifacts with Color Holography 417 17.4.1 Recording Holograms of Museum Artifacts 418 17.4.2 Holographic Recordings with Mobile Equipment 418 17.5 Conclusions 421 Acknowledgments 421 References 422 18 An Introduction to Tomographic Diffractive Microscopy: Toward High-Speed Quantitative Imaging Beyond the Abbe Limit 425 Jonathan Bailleul, Bertrand Simon, Matthieu Debailleul, and Olivier Haeberle 18.1 Introduction 425 18.2 Conventional Transmission Microscopy 426 18.2.1 Transmission Microscopy and Koehler Illumination 426 18.2.2 Dark-Field Microscopy 428 18.2.3 Phase-Contrast Microscopy 429 18.3 Phase Amplitude Microscopy 431 18.3.1 Digital Holography 432 18.3.2 Wavefront Analyzer 433 18.4 Tomographic Diffractive Microscopy for True 3D Imaging 433 18.4.1 Limits of Phase Microscopy 433 18.4.2 Tomography by Illumination Variation 434 18.4.3 Tomography by Specimen Rotation 436 18.5 Biological Applications 438 18.6 Conclusions 439 References 439 19 Nanoplasmonic Guided Optic Hydrogen Sensor 443 Nicolas Javahiraly and Cedric Perrotton 19.1 Introduction 443 19.2 Fiber Optic Sensor 448 19.3 Pd Hydrogen Sensing Systems 451 19.3.1 Bulk Palladium Film 451 19.3.2 Thin Pd Film 453 19.3.3 Metal Properties upon Hydrogenation 454 19.4 Fiber Optic Hydrogen Sensors 455 19.5 Fiber Surface Plasmon Resonance Sensor 457 19.6 Sensitive Material for Hydrogen Sensing 460 19.6.1 Pd Alloys 460 19.6.2 Metal Hydrides and Rare-Earth Materials 461 19.6.3 Tungsten Oxide 462 19.7 Conclusions 464 Acknowledgment 466 References 466 20 Fiber Optic Liquid-Level Sensor System for Aerospace Applications 471 Alex A. Kazemi, Chengning Yang, and Shiping Chen 20.1 Introduction 471 20.2 The Operation Principle and System Design 472 20.2.1 Optical Fiber Long-Period Gratings 472 20.2.2 Optical Time Domain Reflectometer 474 20.2.3 Total Internal Reflection 474 20.2.4 LPG Sensor Liquid-Level System 475 20.2.5 TIR-Based Liquid-Level Detection System 476 20.3 Experimental Results 478 20.4 Liquid-Level Sensor Performance 485 20.5 Conclusions 486 References 487 21 Tunable Micropatterned Colloid Crystal Lasers 489 Seiichi Furumi, Hiroshi Fudouzi, and Tsutomu Sawada 21.1 Introduction 489 21.2 Synthesis of Colloidal Microparticles and Reflection Features of CCs 493 21.3 Laser Action from CCs with Light-Emitting Planar Defects 495 21.4 Micropatterned Laser Action from CCs by Photochromic Reaction 498 21.5 Tunable Laser Action from CC Gel Films Stabilized by Ionic Liquid 498 21.6 Conclusions and Outlook 503 Acknowledgments 504 References 504 22 Colloidal Photonic Crystals Made of Soft Materials: Gels and Elastomers 507 Hiroshi Fudouzi and Tsutomu Sawada 22.1 Introduction 507 22.2 Colloidal Photonic Crystal Gels Consist of Nonclose-packed Particles 508 22.2.1 Highly Oriented Colloidal Photonic Crystals by Shear-Flow Effect 508 22.2.2 Structural Characterization of Crystals Oriented by Shear Flow 510 22.3 Colloidal Photonic Crystal Elastomer Consists of Close-packed Particles 515 22.3.1 A Uniaxially Oriented Opal Film by Crystal Growth under Silicone Liquid 515 22.3.2 Colloidal Photonic Crystal Elastomer Film Coated on a Rubber Sheet 518 22.4 Applications 520 22.4.1 Colloidal Photonic Crystal Gels 520 22.4.2 Colloidal Photonic Crystal Elastomers 521 22.5 Summary and Outlook 523 References 524 23 Surveying the Landscape and the Prospects in Nanophotonics 527 David L. Andrews, Patrick L. Meyrueis, and Marcel Van de Voorde 23.1 Retrospective 527 23.2 Fundamental Developments 527 23.3 Futorology 528 23.4 Applications 529 23.5 Summing Up 529 Index 531

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ