Interfacial wave theory of pattern formation in solidification : dendrites, fingers, cells and free boundaries
Author(s)
Bibliographic Information
Interfacial wave theory of pattern formation in solidification : dendrites, fingers, cells and free boundaries
(Springer series in synergetics)(Springer complexity)
Springer, c2017
2nd ed
Available at 6 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
XU||1||1(2)200037136625
Note
Includes bibliographical references and index
Description and Table of Contents
Description
This comprehensive work explores interfacial instability and pattern formation in dynamic systems away from the equilibrium state in solidification and crystal growth. Further, this significantly expanded 2nd edition introduces and reviews the progress made during the last two decades. In particular, it describes the most prominent pattern formation phenomena commonly observed in material processing and crystal growth in the framework of the previously established interfacial wave theory, including free dendritic growth from undercooled melt, cellular growth and eutectic growth in directional solidification, as well as viscous fingering in Hele-Shaw flow. It elucidates the key problems, systematically derives their mathematical solutions by pursuing a unified, asymptotic approach, and finally carefully examines these results by comparing them with the available experimental results.
The asymptotic approach described here will be useful for the investigation of pattern formation phenomena occurring in a much broader class of inhomogeneous dynamical systems. In addition, the results on global stability and selection mechanisms of pattern formation will be of particular interest to researchers working on material processing and crystal growth.
The stability mechanisms of a curved front and the pattern formation have been fundamental subjects in the areas of condensed-matter physics, materials science, crystal growth, and fluid mechanics for some time now. This book offers a stimulating and insightful introduction for all physicists, engineers and applied mathematicians working in the fields of soft condensed-matter physics, materials science, mechanical and chemical engineering, fluid dynamics, and nonlinear sciences.
Table of Contents
Introduction.- Unidirectional Solidification and the Mullins-sekkerka instability.- Mathematical formulation of free dendrite growth from a pure melt.- Basic steady state of axi-symmetric free dendritic growth.- The steady state for dendritic growth with nonzero surface tension.- Global interfacial wave instability of dendrite growth from a pure melt.- Two dimensional dendritic growth.- Three dimensional dendritic growth from undercooled binary mixture.- Viscous fingering in a hele-shaw cell.- Spatially-periodic deep-cellular growth in hele-shaw cell.- Steady lamellar eutectic growth.
by "Nielsen BookData"