Test fraud : statistical detection and methodology
著者
書誌事項
Test fraud : statistical detection and methodology
(Routledge research in education, 114)
Routledge, 2016
- : pbk
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"1st published 2014, 1st issued in pbk. 2016"--T.p. verso
Includes bibliographical references (p. [249]-257) and index
内容説明・目次
内容説明
There has been an increase in awareness (and perhaps occurrence) of individual and organized cheating on tests. Recent reports of widespread problems with state student accountability tests and teacher certification testing have raised questions about the very validity of assessment programs. While there are several books that specifically detail the issues of test security cheating on assessments, few outline the statistical procedures used for detecting various types of potential test fraud and the associated research findings. Without a significant research literature base, the new generation of researchers will have little opportunity or incentive to improve on existing methods.
Enlisting a variety of experts and scholars in different fields of testing, this edited volume expands on the current literature base by including examples of detailed research findings arrived at by statistical methodology. It also provides a synthesis of the current state of the art with regard to the statistical detection of testing infidelity, particularly for large-scale assessments. By presenting methods currently used by testing organizations and research on new methods, the volume offers an important forum for expanding the literature in this area.
目次
1. Introduction Neal Kingston and Amy Clark 2. A Brief History of Research on Test Fraud Detection and Prevention Amy Clark and Neal Kingston 3. Cheating: Some Ways to Detect it Badly Howard Wainer Part 1: Similarities in Responses 4. Relationships of Examinee Pair Characteristics and Item Response Similarity Jeff Allen 5. A Parametric Approach to Detect a Disproportionate Number of Identical Item Responses on a Test Leonardo S. Sotaridona, Arianto Wibowo, and Irene Hendrawan 6. Detection of Non-Independent Test Taking by Similarity Analysis Dennis Maynes Part 2: Macro Level Cheating 7. Local Outlier Detection in Data Forensics: Data Mining Approach to Flag Unusual Schools Mayuko Simon 8. Macro Level Systems of Statistical Evidence Indicative of Cheating Michael Chajewski, YoungKoung Kim, Judit Antal, and Kevin Sweeney 9. A Bayesian Hierarchical Linear Modeling Approach for Detecting Cheating and Aberrance William Skorupski and Karla Egan Part 3: Answer Changing Behavior 10. Patterns of Erasure Behavior for a Large-Scale Assessment Andrew A. Mroch, Yang Lu, Chi-Yu Huang, and Deborah J. Harris 11. AYP consequences and Erasure Behavior Vincent Primoli 12. An Exploration of Answer Changing Behavior on a Computer-Based High-Stakes Achievement Test Gail C. Tiemann and Neal M. Kingston Part 4: Detection of Aberrant Responses 13. Identifying Non-Effortful Student Behavior on Adaptive Tests: Implications for Test Fraud Detection Steven L. Wise, Lingling Ma, and Robert A. Theaker 14. A Method for Measuring Performance Inconsistency by Using Score Differences Dennis Maynes Part 5: Multiple Methods 15. Data Forensics: A Compare-and-Contrast Analysis of Multiple Methods Christie Plackner and Vincent Primoli 16. Using Multiple Methods to Detect Aberrant Data Karla Egan and Jessalyn Smith 17. Test Security for Multistage Tests: A Quality Control Perspective Charles Lewis, Yi-Hsuan Lee and Alina A. von Davier
「Nielsen BookData」 より