Algebra
Author(s)
Bibliographic Information
Algebra
(Pearson modern classic)
Pearson, c2018
2nd ed
- : pbk
Available at 11 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Originally published in 2011, reissued as part of Pearson's modern classic series
Includes bibliographical references (p. 523-524) and index
Description and Table of Contents
Description
Appropriate for one- or two-semester algebra courses
This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles.
Algebra, 2nd Edition, by Michael Artin, provides comprehensive coverage at the level of an honors-undergraduate or introductory-graduate course. The second edition of this classic text incorporates twenty years of feedback plus the author's own teaching experience. This book discusses concrete topics of algebra in greater detail than others, preparing readers for the more abstract concepts; linear algebra is tightly integrated throughout.
Table of Contents
1. Matrices
1.1 The Basic Operations
1.2 Row Reduction
1.3 The Matrix Transpose
1.4 Determinants
1.5 Permutations
1.6 Other Formulas for the Determinant
1.7 Exercises
2. Groups
2.1 Laws of Composition
2.2 Groups and Subgroups
2.3 Subgroups of the Additive Group of Integers
2.4 Cyclic Groups
2.5 Homomorphisms
2.6 Isomorphisms
2.7 Equivalence Relations and Partitions
2.8 Cosets
2.9 Modular Arithmetic
2.10 The Correspondence Theorem
2.11 Product Groups
2.12 Quotient Groups
2.13 Exercises
3. Vector Spaces
3.1 Subspaces of Rn
3.2 Fields
3.3 Vector Spaces
3.4 Bases and Dimension
3.5 Computing with Bases
3.6 Direct Sums
3.7 Infinite-Dimensional Spaces
3.8 Exercises
4. Linear Operators
4.1 The Dimension Formula
4.2 The Matrix of a Linear Transformation
4.3 Linear Operators
4.4 Eigenvectors
4.5 The Characteristic Polynomial
4.6 Triangular and Diagonal Forms
4.7 Jordan Form
4.8 Exercises
5. Applications of Linear Operators
5.1 Orthogonal Matrices and Rotations
5.2 Using Continuity
5.3 Systems of Differential Equations
5.4 The Matrix Exponential
5.5 Exercises
6. Symmetry
6.1 Symmetry of Plane Figures
6.2 Isometries
6.3 Isometries of the Plane
6.4 Finite Groups of Orthogonal Operators on the Plane
6.5 Discrete Groups of Isometries
6.6 Plane Crystallographic Groups
6.7 Abstract Symmetry: Group Operations
6.8 The Operation on Cosets
6.9 The Counting Formula
6.10 Operations on Subsets
6.11 Permutation Representation
6.12 Finite Subgroups of the Rotation Group
6.13 Exercises
7. More Group Theory
7.1 Cayley's Theorem
7.2 The Class Equation
7.3 r-groups
7.4 The Class Equation of the Icosahedral Group
7.5 Conjugation in the Symmetric Group
7.6 Normalizers
7.7 The Sylow Theorems
7.8 Groups of Order 12
7.9 The Free Group
by "Nielsen BookData"